Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB) Semester-I

A)	Course Code	:	2000171(046)
B)	Course Title	:	Communication Skills - I
C)	Pre- requisite Course Code and Title	:	
D)	Rationale	:	

Communication Skills in English is one of the core skills to be developed in diploma graduates as students exchange information and convey their ideas and opinions with different stakeholders. In recent years English has emerged as language of communication to exchange ideas, information and views amongst top and middle level management in organization/institution. It is the need of the day to be proficient in communication skills to perform effectively. Students in technical institutes need to be trained for this. The present curriculum focuses on the attainment of course outcomes related to speaking, reading, writing and listening, so that the students are confident, self-reliant and capable of communicating in varied situations.

Many industrial surveys have indicated that most of the pass outs from educational institutions are found to be lacking in soft skills especially in communication skills, thus adversely affecting their efficiency and effectiveness at work.

E) Course Outcomes:

- CO-1 Use elementary grammar to form correct sentences while Speaking & Writing.
- CO-2 (a) Demonstrate ability to read and interpret documents/news paper/reports with correct pronunciation, audibility & accent.
 - (b) Demonstrate effective speaking skills with clarity in an organized and professional manner.
 - (c) Listen and reproduce the same in the oral and written form.
- CO-3 Provide response in written form related to prescribed short stories and passages.

S.N.	Board of	Course	Course Title	Scheme of Studies (Hours/Week)			
	Study	Code		L	Р	т	Total Credit (C)
							L+T+(P/2)
1.	Humanities	2000171 (046)	Communication Skills-I	2	-	1	3
L-Lecture P-Practical T-Tutorial							

F) Scheme of Studies: Scheme of Studies:

- Legend: L: Classroom Instruction (Includes different instructional strategies i.e. Lecture and other), P: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies) T- Tutorial includes Sessional Work (SW) (includes assignment, seminar, mini project etc.) and Self Learning (SL), C: Credits
- **Note:** SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

G) Scheme of Assessment:

S. No	Board of	Course	Course Title	Scheme of Examination					
	Study	Code		Theory		Practi	ical	Total Marks	
				ESE	СТ	TA	ESE	TA	
1	Humanities	2000171 (046)	Communication Skills-I	70	20	30	-	-	120

Legend: ESE: End Semester Exam, CT: Class Test, TA: Teacher Assessment

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB) Semester-I

Note: i. Separate passing is must for TA component of Progressive Assessment, both for theory and practical. ii. Separate passing is must for End Semester Exam (Theory) and End Semester Exam (Practical).

H) Course-Curriculum Detailing:

This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (L), Laboratory Instruction (P), T- Tutorial includes Sessional Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Session Outcomes (SOs) and finally Course Outcomes (COs) upon the completion of course.

CO-1 Use elementary grammar to form correct sentences while Speaking & Writing.

Session Outcomes	Laboratory Instruction	Class room Instruction		Self Learning
(SOs)	(P)	(L)		(SL)
SO1.1 Prepare		Unit-1.0 English	•	One Word
grammatically		Grammar		Substitution
correct		1.1 Sentence-	•	Rearrangement
sentences as		Parts, types		of Jumbled
per given		transformation		words
instruction		(Affirmative,		
SO1.2 Distinguish		Negative and		
among various		interrogative)		
determiners		1.2 Determiners		
SO1.3 Apply correct		1.3 Tenses		
verb in the		1.4 Active and Passive		
sentence.		Voice		
SO1.4 Use correct		1.5 Prepositions		
voice in		1.6 Subject-Verb		
sentences.		Agreement		
SO1.5 Supply correct		-		
prepositions				

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Fill in the blanks, match the following, multiple choice question on the topic: Determiners, Tenses, Active and Passive Voice, Prepositions, Subject-verb Agreement, etc.

b. Mini Project:

- i. Express your views by writing an incidence using proper grammar.
- ii. Select topic and share your views on the same with the audience. (2-3 min.)

c. Other Activities (Specify):

i. Practice for speaking skills in front of mirror for self feedback.

(Hours -14)

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB) Semester-I

- CO-2 (a) Demonstrate ability to read and interpret documents/news paper/reports with correct pronunciation, audibility & accent.
 - (b) Demonstrate effective speaking and writing skills with clarity in an organized and professional manner.
 - (c) Listen and reproduce the same in the oral and written form.

(Hours- 14)

Session Outcomes	Laboratory Instruction	Class room Instruction	Self Learning
(SOs)	(P)	(L)	(SL)
 SO2.1 Communicate effectively using correct pronunciation, accent, modulation, clarity in content, structure, during conversation presentations, debates, and interviews by use of different tools of communication SO2.2 Express views in written and oral form correctly understanding barriers in communication SO2.3 Use effective techniques of listening for proper communication 	LE2.1 Deliver extempore speech of short duration (2 minutes) using appropriate verbal & non- verbal communicati- on. LE2.2 Interpret & communicate Aural instructions to others in Oral and Written Form.	Unit-2.0 Effective Communication 2.1 Objectives of communication. 2.2 Elements of Communication process 2.3 Seven Cs of Communication 2.4 Different Communication Skills •Listening •Speaking •Reading •Writing 2.5 Effective use of listening • Listening versus hearing • Process and Purpose of listening. • Techniques of effective listening	 Practice para- linguistic features Merits of effective listening

SW- 2 Suggested Sessional Work (SW):

a. Assignments:

- i. Discuss various factors affecting Listening.
- ii. In today's competitive world LSRW Skills provide key to success in career "Explain the statement
- iii. List down the dos & don'ts to be taken care for attending a counseling

b. Mini Project

Recorded Lecture, Presentation, Discourse from different channels like Peace of Mind/Astha, may be recorded and played in the class. Students are asked to listen and answer the questions

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB) Semester-I

Group discussion on different topics can be arranged by the teacher like Skills Development & youth, PM Skill Development Mission, Importance of Soft Skills, Professional Ethics & Values, Being Human, Environmental Protection, Gender Bias, Improving Presentation Skills etc.

CO-3 Provide response in written form related to prescribed short stories and passages.

			(Hours -20)
Session Outcomes	Laboratory	Class room Instruction	Self Learning
(SOs)	Instruction	(L)	(SL)
	(P)		
SO3.1 Express		*SOs Reading and Writing skills	
views in		will be developed through	Summarize
written		following content for CO2 as well	Short Stories
and oral		Unit-3.0 Short Stories	and passages as
reading		3.1 Selfish Giant-Oscar Wilde	mentioned in
the		3.2 A Letter to God-Gregario	Class room
stories		Lapex Y-Fuentes	
503.200mprenend		3.3 An astrologer's Day –R.K.	
SO3.3 Exhibit the		Narayan	
Procedure of		Unit 4.0 Suggestive passages for	
Summarizing		Comprehension	
SO3.4 Write		4.1 Language of Science	
as long		4.2 Non-conventional sources of	
answers to		Energy	
questions.		4.3 Our Environment	
		4.4 Entrepreneurship	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Loud reading of given stories by each student in the class. Students will listen the story carefully and summarize with moral of the story.
- ii. Answer briefly questions of the prescribed stories and chapters.

b. Mini Project:

- i. A group of students will select some short stories from Panchtantra or good source. Each student will read the different story loudly. It is reproduced/narrated by another student turn wise which is audio recorded through mobile etc. Teacher acts as facilitator.
- ii Read and interpret documents/news paper/internet for understanding the prescribed content.

c. Other Activities (Specify):

i. Paragraph writings on general topics such as Time Management, Developing Positive Attitude, Team Building, environment, entrepreneurship, Developing Learning to Learn skills etc. Group discussion, debate and extempore on current topics.

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

Semester-I

I) Suggested Specification Table (For ESE of Classroom Instruction):

Unit	Unit Titles	M	Marks Distribution			
Number		R	U	Α	Marks	
I	English Grammar	3	7	10	20	
II	Effective communication	2	5	8	15	
	Short Stories	-	7	8	15	
lv	Passages for Comprehension	3	7	10	20	
	Total	8	26	36	70	

Legend: R: Remember, U: Understand, A: Apply and above

J) Note: There will be no end semester examination (ESE) for laboratory instructions and the practical activity will be assessed for term work.

K) Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Demonstration
- 7. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 8. Brainstorming

L) Suggested Learning Resources:

(a) Books :

S.	Title	Author	Publisher	Edition & Year
No.				
1	English Grammar in	Murphy Raymond	Cambridge	4 th Edition
	Use		Publications	
2	Living English	Allen	Cambridge	Fifth edition(2009)
	Structure		Publications	
3	Effective English	Kumar, E. Suresh;	Pearson Education,	2009 ISBN: 978-81-
	with CD	Sreehari, P.; Savithri, J.	Noida, New Delhi	317-3100-0
4	English Grammar at	Gnanamurali, M.	S. Chand and Co. New	2011
	Glance		Delhi,	ISBN:97881219290
				42
5	Communication Skill		Somaiya Publication	
	for Technical			
	Students			
6	Elementary English	Agarwal N.K.	Goyal Brothers	Latest Edition
	Grammar and		Prakashan	
	Composition			
7	A Study Guide on	Dr. Sumi Guha	Vaibhav Prakashan	1 st Edition, 2020
	Communication	Dr. Shameena Bano		ISBN-978-93-
	Skills for Technical			89989-25-0
	Students			

(b) Open source software and website address:

1. <u>https://www.englishgrammar.org/</u>

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

- 2. http://www.englishgrammarsecrets.com/
- 3. <u>https://www.usingenglish.com/handouts/</u>
- 4. http://learnenglish.britishcouncil.org/en/english-grammar
- 5. <u>https://www.englishclub.com/grammar/</u>
- 6. <u>http://www.perfect-english-grammar.com/</u>
- 7. <u>http://www.englishteachermelanie.com/category/grammar/</u>
- 8. <u>https://www.grammarly.com/blog/category/handbook</u>
- 9. https://www.britishcouncil.in/english/learn-online
- 10. http://learnenglish.britishcouncil.org/en/content
- 11. http://www.talkenglish.com/
- 12. languagelabsystem.com
- 13. <u>www.wordsworthelt.com</u>
- (c) Others:
 - 1. Learning Packages.
 - 2. Lab Manuals.
 - 3. Language software Manual
 - 4. Users' Guide

M) List of Major Laboratory Equipment and Tools:

S. No.	Name of Equipment	Broad Specifications	Relevant Experiment Number
1	Computers	A complete computer system with headphones & Speakers	All
2	Soft ware	English communication softwares – Globarina, A- One Solutions, Wordsworth, Spears	All
3.	Computer tables & chairs	Depending upon the size of the Language Lab	All

Semester-I

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

Semester-I

N) Mapping of POs & PSOs with COs:

Course Outcomes (COs)	Programme Outcomes (POs)							Programme Specific Outcomes (PSOs)				
	PO-1 Basic knowledge	PO-2 Discipline knowledge	PO-3 Experime nts and practice	PO-4 Engineering Tools	PO-5 The engineer and society	PO-6 Environment and sustainability	PO-7 Ethics	PO-8 Individual and team work	PO-9 Communic ation	PO-10 Life-long learning	PSO-1	PSO-2
CO-1 Use elementary grammar to form correct sentences while Speaking &Writing	2	1	2		-	-	-	1	2	2	1	2
 CO-2 (a) Demonstrate ability to read and interpret documents/news papers/reports with correct pronunciation, audibility & accent. (b) Demonstrate effective speaking and writing skills with clarity in an organized and professional manner. (c) Listen and reproduce the same in the oral and written form. 	2	1	3	2	-	-	1	2	3	3	2	2
CO-3 Provide response in written form related to prescribed short stories and passages	2	2	2		-		-	1	2	1	1	1

Legend:1 – Low, 2 – Medium, 3 – High

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

Semester-I

O) Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction(P)	Classroom Instruction (L)	Self Learning (SL)
PO1,2,3,8,9,10	CO-1 Use elementary grammar to form correct sentences during Speaking	SO1.1 SO1.2		Unit-1.0 English Grammar 1.1, 1.2, 1.3, 1.4, 1.5, 1.6	
PSO 1,2	& Writing.	SO1.3 SO1.4 SO1.5			
PO	CO-2 (a) Demonstrate ability to read &	SO2.1	LE2.1	Unit-2.0 Effective	
1,2,3,4,7,8,9,10	interpret documents/news	SO2.2	LE2.2	Communication	
PSO 1,2	papers/reports with correct pronunciation, audibility & accent. (b) Demonstrate effective speaking skills with clarity in an organized and professional manner. (c) Listen and reproduce the same in the oral and written form.	502.3		2.1, 2.2, 2.3, 2.4, 2.5	As mentioned in relevant page number
PO 1,2,3,8,9,10 PSO 1,2	CO-3 Provide response in written form related to prescribed short stories and passages	SO3.1 SO3.2 SO3.3 SO3.4		Unit-3.0 Short Stories 3.1 ,3.2,3.3,3.4 Unit-4.0 Passages for comprehension 4.1, 4.2, 4.3, 4.3, 4.4	

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

Semester-I

A)	Course Code	: 2000172(014)
B)	Course Title	: Applied Maths-I
C)	Pre-requisite Course Code and Title	:
D)	Detterrate	

D) Rationale

Mathematics has the potential to understand the core technological studies. This course of Applied Mathematics-I is being introduced as a foundation, which will help in developing the requisite course outcomes to most of the Diploma programs, and hence caters to the needs of the industry enhancing the employability. It will help the students to apply the principles of the fundamental engineering mathematics to solve related technology problems. The course will give the students an insight to apply and analyze the Engineering problems scientifically based on Determinants, Matrices, Differential Calculus, Co-ordinate Geometry and Fundamentals of the Statistics.

E) Course Outcomes:

- CO-1 Solve engineering related problems based on concepts of Algebra.
- CO-2 Use basic concepts of Differential Calculus to solve engineering related problems.
- CO-3 Compute maxima, minima, tangent and normal for engineering related problems.
- CO-4 Solve engineering problems under given conditions of straight lines and conic sections.
- CO-5 Use basic concepts of Statistics to solve engineering related problems.

F) Scheme of Studies:

S.No	Board of Course Course Study Code Title	Scheme of Studies (Hours/Week)					
		Code	Title	L	Ρ	Т	Total Credits(C) L+T+(P/2)
1.	Applied Science	2000172 (014)	Applied Maths-I	2	-	1	3

Legend: L: Classroom Instruction (Includes different instructional strategies i.e. Lecture and other),P: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies) T- Tutorial includes Sessional Work(SW) (includes assignment, seminar, mini project etc.) and Self Learning (SL), C: Credits

Note: SW and SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning

G) Scheme of Assessment:

		Board of	Course	Course			Schei	me of Ex	xaminat	ion
	S.No	Study Code Title		Title	Theory		ieory		tical	Total
	otaaj	oouo		ESE	СТ	TA	ESE	TA	Marks	
	1	Applied Science	2000172 (014)	Applied Maths-I	70	20	30	-	-	120

Notei: i. Separate passing is must for TA component of Progressive Assessment, both for theory and practical. ii. Separate passing is must for End Semester Exam (Theory) and End Semester Exam (Practical).

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

Semester-I

H) Course-Curriculum Detailing:

This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (L), Laboratory Instruction (P), T- Tutorial includes Sessional Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Session Outcomes (SOs) and finally Course Outcomes (COs) upon the completion of course.

CO-1 Solve engineering related problems based on concepts of Algebra.

		r	
Session Outcomes (SOs)	Laboratory Instruction (P)	Class room Instruction (L)	Self Learning (SL)
SO1.1 Calculate the area of the given triangle by determinant method.		Unit-1.0 Algebra 1.1 Determinants	 Solution of simultaneous equations by
SO1.2 Solve given system of linear equations using		1.11 Concept and properties of determinants	determinants
Cramer's rule. Solve given system of linear equations using matrix inversion method.		 1.12 Solution of simultaneous equations in three unknowns by Cramer's rule 1.2 Matrices 	 Solution of simultaneous equations by matrix
		1.21 Algebra of Matrices 1.22 Inverse of Matrices	
		equations by matrix inversion method of order 3x3	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Expound examples of determinant in day today life.
- ii. Explore the use of simultaneous equations by matrix method in daily life.
- iii. Expound examples of inverse of matrix for real world problems.

b. Mini Project:

- i. Prepare charts using determinants to find the area of triangle.
- ii. Prepare flow charts for solutions of system of equations by matrix method.
- iii. Prepare models using matrices to solve simple problems based on Cryptography.

- I. Identify engineering problems based on real world problems with the use of free tutorials available on the Internet.
- II. Use graphical software EXCEL, D-PLOT and GRAPH for related topics.
- III. Use MATH-CAD as mathematical tool to solve the problems of differential calculus.
- IV. Seminar on basic applications of matrices
- V. Seminar on application of algebra to engineering related problems.

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB) Se

Semester-I

CO-2 Use basic concepts of Differential Calculus to solve engineering related problems.

Laboratory	Class room Instruction (I)	Solf Looming (SL)
Instruction (P)		Sell Learning (SL)
Instruction (P)	 Unit-2.0 Differential Calculus 2.1 Basic Trigonometry 2.11 Multiple and sub multiple angles 2.2 Functions and Limits 2.21 Independent and dependent variables 2.22 Different types of functions 2.23 Concept of Limit and its evaluation 2.3 Differentiation of elementary functions 2.31 Differentiation of Algebraic, Trigonometric, Exponential and Logarithmic functions 2.32 Differentiation of sum, product, quotient of two functions 2.33 Differentiation of function of a function 	 Limit for given function of one variable Derivatives of given Algebraic, Trigonometric, Exponential and Logarithmic functions
	Laboratory Instruction (P)	Laboratory Instruction (P)Class room Instruction (L)Instruction (P)Unit-2.0 Differential Calculus2.1 Basic Trigonometry 2.11 Multiple and sub multiple angles 2.2 Functions and Limits 2.21 Independent and dependent variables2.12 Different types of functions 2.23 Concept of Limit and its evaluation 2.3 Differentiation of elementary functions 2.31 Differentiation of Algebraic, Trigonometric, Exponential and Logarithmic functions2.32 Differentiation of sum, product, quotient of two function of a function

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- I. Enumerate the value of the limit for given function of one variable.
- II. Explore the applications of derivative of given Algebraic, Trigonometric, Exponential and Logarithmic functions in engineering.

b. Mini Project:

- i. Prepare charts showing formulas of multiple and sub multiple trigonometric functions.
- ii. Prepare graphical representation for the existence of limits of given functions.

- I. Identify engineering problems based on real world problems with the use of free tutorials available on the Internet.
- II. Use graphical software EXCEL, D-PLOT and GRAPH for topics related to calculus.
- III. Use MATH-CAD as mathematical tool to solve the problems of differential calculus.
- IV. Seminar on engineering applications of derivatives of functions.

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

Semester-I

CO-3 Compute maxima, minima, tangent and normal for engineering related problems.

			(Approx. Hrs: 11)
Session Outcomes (SOs)	Laboratory Instruction (P)	Class room Instruction (L)	Self Learning (SL)
 SO3.1 Calculate second order derivatives of given functions. SO3.2 Apply the concepts of differentiation to find the equation of tangent and normal for given problem. SO3.3 Utilize the concepts of differentiation to calculate maxima and minima for given function under certain conditions. 		 Unit-3.0 Applications of Differential Calculus 3.1 Second order derivatives- Second order derivatives (without examples) 3.2 Equation of Tangent and Normal 3.21 Equation of Tangent and Normal for functions of one variable only 3.3 Maxima and minima 3.31 Maxima and minima for functions of one variable only 	 Applications of derivatives Maximum and minimum value of given Functions

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Explore the role of differentiation to second order derivatives.
- ii. Analyze the equation of tangent and normal for given function and expound what it reflects.
- iii. Calculate the maximum and minimum value of given function for engineering related problems.

b. Mini Project:

- I. Prepare flow charts showing method of getting maximum and minimum value of given function.
- II. Prepare graph for tangent and normal for given function.
- III. Prepare model showing the application of tangent and normal to bending of roads in case of sliding of vehicle.

- I. Identify engineering problems based on real world with the use of free tutorials available on the Internet.
- II. Use graphical software EXCEL, D-PLOT and GRAPH for applications of calculus and related topics.
- III. Use MATH-CAD as mathematical tool to solve the problems of applications of differential calculus.
- IV. Seminar on the engineering applications of maxima and minima.
- V. Seminar on applications of tangent and normal for engineering related problems.

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB) Semester-I

CO-4 Solve engineering problems under given conditions of straight lines and conic sections.

			(Approx. Hrs.: 10)
Session Outcomes (SOs)	Laboratory Instruction (P)	Class room Instruction (L)	Self Learning (SL)
SO4.1 Calculate angle between given two straight lines. SO4.2 Obtain parallel distance between the given two parallel lines	 Unit-4.0. Co-ordinate Geometry 4.1 Various forms of straight lines 4.11 Co-ordinate systems, slope point form, two point form 4.12 Distance between two points, division of a line segment 	 Co-ordinate geometry of straight lines and given conic sections 	
SO4.3 Form the equation of circle under given conditions. SO4.4 Calculate the parameters of given parabola and ellipse.		 4.13 Two points intercepts form, general form 4.14 Perpendicular distance from a point on the line, perpendicular distance between two parallel lines 4.2 Conic sections 4.21 Definition, standard forms 4.22 General equation 4.23 Center and radius of a circle 4.24 Focus, axis, directrix, latus rectum and vertex of parabola and ellipse 	 Parameters of focus, axis, directrix, vertex and latus rectum of ellipse and parabola

SW-4 Suggested Sessional Work (SW):

Assignments:

- i. Enumerate the angle and distance between two lines.
- ii. Prepare a model showing various forms of equation of circle under given conditions.
- iii. Write the specific features of the parameters like focus, axis, directrix, vertex and latus rectum of ellipse and parabola.

Mini Project:

- i. Prepare flow charts showing different forms of straight lines.
- ii. Prepare graph for plotting ellipse and parabola.

- i. Identify engineering problems based on real world problems with the use of free tutorials available on the Internet.
- ii. Use graphical software EXCEL, D-PLOT and GRAPH for related topics.
- iii. Use MATH-CAD as mathematical tool to solve the problems of differential calculus.
- iv. Seminar on the conversion of different forms of straight lines.
- v. Seminar on charts showing method of getting maximum and minimum value of given functions.

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

CO-5 Use basic concepts of Statistics to solve engineering related problems.

Semester-I

(Approx. Hrs: 11)

Session Outcomes (SOs)	Laboratory Instruction (P)	Class room Instruction (L)	Self Learning (SL)
SO5.1 Draw the graph for given frequency distribution (distributions).		UNIT 5. Fundamentals of Statistics 5.1 Frequency distribution and central tendency	 Frequency distribution and central tendency Standard
 SO5.2 Calculate mean, median and mode for the given set of observations. SO5.3 Calculate standard deviation for given set of engineering problems. SO5.4 Determine the variance and coefficient of variance of grouped and ungrouped data. 		 5.11 Introduction, graphical representation of frequency distribution 5.12 Central tendency, mean, median, frequency distribution and mode 5.2 Dispersion and deviation 5.21 Measure of dispersion. 5.22 Range, quartile deviation. 5.23 Standard deviation, root mean square deviation 5.3 Variance and coefficient of variance 5.31 Variance and coefficient of variance 	deviation for the given frequency distribution

SW-5 Suggested Sessional Work (SW):

Assignments:

- i. Prepare detail report on frequency distribution for the given data.
- ii. Represent the given frequency distribution in graphical form.
- iii. Enumerate the mean, median and mode of the given data.
- iv. Write the importance of calculating standard deviation for the given frequency distribution to engineering applications.
- v. Analyze variance and coefficient of variance of the given data to industry specific problems.

Mini Project:

- i. Prepare charts for grouped and ungrouped data.
- ii. Prepare chart showing mean, median and mode values of given data.
- iii. Prepare frequency curves like histogram, frequency polygon and ogive by graphical method.

- i. Identify engineering problems based on real world problems with the use of free tutorials available on the Internet.
- ii. Use graphical software EXCEL, D-PLOT and GRAPH for related topics.
- iii. Use MATH-CAD as mathematical tool to solve the problems of differential calculus.
- iv. Seminar on different types of dispersion and deviations.
- v. Seminar on applications of central tendencies likesmean, median and mode for engineering related problems.

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB) Semester-I

Note: Performance under Laboratory and Sessional work may appear in more than one COs/SOs.

I) Suggested Specification Table (For ESE of Classroom Instruction):

Unit	Unit Unit		Marks Distribution			
Number	Title	R	U	A	Marks	
I	Algebra	2	4	6	12	
II	Differential Calculus	2	4	6	12	
III	Applications of Differential Calculus	2	6	8	16	
IV	Co-ordinate Geometry	2	4	8	14	
V	Fundamentals of Statistics	2	6	8	16	
	Total	10	24	36	70	

Legend: R: Remember, U: Understand, A: Apply and above

J) Suggested Specification Table (For ESE of Laboratory Instruction*): NA

Laboratory Instruction	Short Laboratory	Assessme			
Number	Experiment litie	Performance		Viva-	
		PRA	PDA	Voce	
-	-	-	-	-	-

*Assessment rubric, process and product check list with rating scale need to be prepared by the course wise teachers for each experiment for conduction and assessment of laboratory experiments /practicals. Legend: PRA: Process Assessment, PDA: Product Assessment

K) Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Industrial visits
- 6. Industrial Training
- 7. Field Trips
- 8. Portfolio Based Learning
- 9. Role Play
- 10. Demonstration
- 11. ICT Based Teaching Learning (Video Demonstration, CBT, Blog, Face book, Mobile)
- 12. Brainstorming
- 13. Others

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

Semester-I

L) Suggested Learning Resources:

(a) Books:

SI. No.	Title	Author	Publisher	Edition & Year
1	Advanced Engineering Mathematics	Krezig, Ervin	Wiley Publ., New Delhi	2014, ISBN: 978-0-470- 45836-5
2	Advanced Engineering Mathematics	H. K. Das	S. Chand & Co, New Delhi	ISBN: 9788121903455
3	Higher Engineering Mathematics	B. S. Grewal	Khanna Publ., New Delhi	2015, ISBN: 8174091955
4	Engineering Mathematics, Volume 1	S. S. Sastry	PHI Learning, New Delhi	2009, ISBN: 978-81- 203-3616-2
5	Fundamentals of Mathematical Statistics	S. C. Gupta	S. Chand & Sons	2014

(b) Open source software and website address:

- 1 www.scilab.org/ -SCI Lab
- 2-www.dplot.com/ -DPlot
- 3 www.allmathcad.com/ -MathCAD
- 4 www.wolfram.com/mathematica/ MATHEMATICA
- 1. www.easycalculation.com

(c) Others:

- 1. Learning Packages.
- 2. Lab Manuals.
- 3. Manufacturers' Manual
- 4. Users' Guide

M) List of Major Laboratory Equipment and Tools: NA

S. No.	Name of Equipment	Broad Specifications	Relevant Experiment Number
-	-	-	-

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

Semester-I

POs &	COs No. & Title.	SOs	Laboratory	Classroom Instruction (L)	Self Learning (SL)
PSOs No.		No.	Instruction		
			(P)		
PO-1,	CO-1	SO1.1		Unit-1.0 Algebra	
2,3,8,9,10	Solve engineering related	SO1.2		1.1, 1.2	
PSO	problems based on concepts of				
	Algebra.				
PO-1,	CO-2	SO2.1		Unit-2.0 Differential Calculus	
2,3,8,9,10	Use basic concepts of	SO2.2			
PO-10	Differential Calculus to solve	\$02.3		2.1,2.2,2.3	
PSO	engineering related problems.				
PO-1,	CO-3	SO3.1		Unit-3.0 Applications of Differential Calculus	As montioned in
2,3,8,9,10	Compute maxima, minima,	SO3.2			AS mentioned in
	tangent and normal for	SO3.3		3.1,3.2,3.3	relevant pages
PSO	engineering related problems.				
PO-1,	CO-4	SO4.1		Unit-4.0 Co-ordinate Geometry	
2,3,8,9,10	Solve engineering problems	SO4.2			
PO-10	under given conditions of	SO4.3		4.1, 4.2	
PSO	straight lines and conic sections.	SO4.4			
PO-	CO-5	SO5.1		Unit-5.0 Fundamentals of Statistics	
1.2.3.8.9.10	Use basic concepts of Statistics	SO5.2			
	to solve engineering related	SO5.3		5.1.5.2.5.3	
PSO	problems.	SO5.4			

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

Semester-I

A)	Course Code	:	2000173(037)
B)	Course Title	:	Applied Mechanics
C)	Pre- requisite Course Code and Title	:	
D)	Rationale	:	

Applied mechanics (Engineering mechanics) is a branch of the physical sciences that deals with the response of bodies (solids and fluids) or systems of bodies to external forces. To impart basic knowledge of Engineering Mechanics this course will help the student to develop basic know-how and awareness of the various laws of physics and it's real life applications in the various fields of engineering. After going through this course the student will be able to identify, convert and resolve real loads and couples into their theoretical counterparts. This course is a perquisite to 'strength of materials' and 'Theory of machines' courses in latter semesters.

E) Course Outcomes:

- CO-1 Identify the force systems for different conditions using concepts of mechanics.
- CO-2 Find the Centroid and Centre of gravity of various engineering components.
- CO-3 Estimate force of friction in various conditions.
- CO-4 Estimate velocities and accelerations in various linear and curvilinear motions.
- CO-5 Calculate power, torque and energy associated with various engineering applications.
- CO-6 Select suitable power transmission mode, simple lifting machine and estimate related parameters for various situations.

	Board of	Course	Course	Scheme of Studies (Hours/Week		es (Hours/Week)	
S.No	Study	oode		L	Р	Т	Total Credits(C) L+T+(P/2)
1	Mechanical Engineering	2000173 (037)	Applied Mechanics	2	-	1	3
2	Mechanical Engineering	2000190 (037)	Applied Mechanics (Lab)	-	2	-	1

F) Scheme of Studies:

Legend: L: Classroom Instruction (Includes different instructional strategies i.e. Lecture and others), P: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies),T- Tutorial includes Sessional Work(SW) (assignment, seminar, mini project etc.) and Self Learning(SL), C:Credits

Note: SW and SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning

	Board of	Course	Course	Course Title Scheme of ESE CT TA		of Examination			
S.No	Study	Code	Title			Practical		Total	
						ESE	TA	Marks	
1.	Mechanical Engineering	2000173 (037)	Applied Mechanics	70	20	30	-	-	120
2.	Mechanical Engineering	2000190 (037)	Applied Mechanics (Lab)	-	-	-	30	50	80

G) Scheme of Assessment:

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB) Semester-I

Note: i. Separate passing is must for TA component of Progressive assessment, both for theory and practical. ii. Separate passing is must for End Semester Exam (Theory) and End Semester Exam (Practical).

H) Course-Curriculum Detailing:

This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (L), Laboratory Instruction (P), T- Tutorial Includes Sessional Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Session Outcomes (SOs) and finally Course Outcomes (COs) upon the completion of course.

CO-1 Identify the force systems for different conditions using concepts of mechanics.

		4)	Approx. Hrs: L+P+T=08)
Session Outcomes (SOs)	Laboratory Instruction	Class room Instruction	Self Learning
-	(P)	(L)	(SL)
SO1.1 Explain basic	LE1.1 Measure resultant	Unit-1.0 Fundamentals and	 Unit system.
terms related to	force using law of	Resolution of Forces	Graphical method
mechanics.	Triangle of forces	1.1 Definition of Mechanics,	of Composition
SO1.2 Identify the	setup.	Statics, Dynamics- Kinetics,	and resolution of
system of forces	LE1.2 Measure resultant	Kinematics. Concept of space,	forces.
in the given	force using law of	mass, particle, body, rigid	
situation with	Parallelogram of	body, scalar, vector,	
justification.	forces setup	fundamental units, derived	
SO1.3 Resolveand	IF1 3 Measure resultant	units.	
compose various	force using law of	1.2 Force-concept, definition, unit,	
forces acting on	Polygon of forces	graphical representation.	
component	Polygon of forces	1.3 Concept of system of forces-	
	Selup.	non-coplanar, coplanar,	
SO1.4 Identify the	LE I.4 Measure resultant	concurrent non-concurrent	
	Torce using Lami's	and narallel forces	
the given system	i neorem using Jib	1.4 Composition and Resolution of	
with justification.	crane setup.	forces	
SO1 5 Estimato forcos	LE1.5 Use Funicular	1 E Free body diagrams law of	
and Couples	diagram to	1.5 Freebody diagrams, law of	
acting on the	demonstrate Non-	parallelogram, varignon's	
given component.	concurrent, Non-	theorem.	
5 1	Parallel forces.	1.6 Equilibrium of Coplanar	
	LE1.6 Measure resultant	concurrent forces, parallel	
	moment using Law of	forces and non-concurrent	
	Moments setup.	forces, Lami's Theorem.	
		1.7 Moment of a force and Couple,	
		properties of couple,	
		conditions of equilibrium,	
		applications.	

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

Semester-I

(Approx Liro, D. L.T. 11)

SW-1 Suggested Sessional Work (SW):

Assignments:

i. Solve two problems related to law of triangle and law of polygon of forces (each).

Mini Project:

i. Select two stationary components from day to day life and try to identify all the forces acting on them in magnitude and direction.

Other Activities (Specify):

- i. Draw free body diagram of 'hanging rod' of a ceiling fan in running condition.
- ii. Draw free body diagram of brake lever of a bike.
- iii. Estimate force exerted by your body on each leg of the chair/bench on which you are sitting.

CO-2 Find the Centroid and Centre of gravity of various engineering components.

		V.	(ppi0x.1113.1 +E+1 = 11)
Session Outcomes (SOs)	Laboratory Instruction	Class room Instruction	Self Learning
	(P)	(L)	(SL)
 SO2.1 Locate centroid of given regular plane and compound areas. SO2.2 Compute MI of a given plane areas. SO2.3 Use Perpendicular and Parallel Axis theorems to calculate MI about given axis of a given plane area. 	LE2.1 Determine centroid of a given lamina of any shape using any computer aided drafting software. LE2.2 Determine M.I of a given lamina any shape using any computer aided drafting software.	 Unit-2.0 Centroid and Moment of Inertia 2.1 Location of Centroid and Center of Gravity. 2.2 Centroid of regularplane and compound areas. 2.3 Center of Gravity of simple solids. 2.4 Moment of Inertia of plane areas. 2.5 Perpendicular and Parallel Axis theorems. 	 Calculation of CG of solid body. Calculation of M.I of solid body.

SW-2 Suggested Sessional Work (SW):

Assignments:

i.

- Find out Area Moment of Inertia of a solid circular wheel at the point of contact with road.
- ii. Find out Area Moment of Inertia of any rectangular shaped calendar at the point of hinge/suspension on the wall.
- iii. Locate CG and find out Area Moment of Inertia '30°-60° and 45°-45° solid Set Squares' used as drawing instruments about any side and hypotenuse.
- iv. Verify all above using MI calculation facility of any computer aided drafting software.

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

Semester-I

Micro Project:

- i. Prepare a chart to show CGs locations of cross sections of different standard Mild steel pipe and rod sections available in the market.
- ii. Determine the location of CG of 'circle master' used as a drawing instrument.

Other Activities (Specify):

i. Prepare a list of at least five formulas related to Mechanical and Civil engineering in which use of area Moment of Inertia is required.

CO-3 Estimate force of friction in various conditions.

			(Approx. Hrs: L+P+T= 14)
Session Outcomes (SOs)	Laboratory Instruction (P)	Class room Instruction (L)	Self Learning (SL)
 SO3.1 Explain friction and related terms. SO3.2 Select coefficient of friction from data book for a given situation. SO3.3 Estimate coefficient of friction, angle of friction and angle of repose for given situation. SO3.4 Suggest ways to reduce friction. 	LE3.1 Determine coefficient offriction for surfaces of different materials on a Horizontal Plane with given setup. LE3.2 Determine Coefficient of friction for surfaces of different materials with Inclined Plane apparatus.	 Unit-3.0 Friction 3.1 Rough and Smooth surfaces, concept of friction. Types of friction, Coulomb's laws of friction 3.2 Co-efficient of friction, angle of friction, angle of repose. 3.3 Friction on horizontal and inclined plane, Method of reducing friction. 3.4 Screw and Nutfriction, friction in journal Bearing 	 Method ofreducing friction. Advantage and disadvantage of friction

SW-3 Suggested Sessional Work (SW) :

Assignments:

i. Solve numerical problems related to co-efficient of friction, angle of friction, angle of repose and force of friction in different situations.

Micro Project:

i. Prepare a list of engineering components where friction is desirable and undesirable also suggest ways to improve and reduce it respectively.

Other Activities (Specify):

i. Visit a nearby automobile workshop and collect details of the components and locations where oil and grease are applied to reduce the friction.

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

Semester-I

(Approx Hrey L. D. T. 15)

Session Outcomes	Laboratory Instruction	Class room Instruction	
(SOs)	(P)		
Session Outcomes (SOs) SO4.1 Compute velocity under the given uniform and non- uniform acceleration situation. SO4.2 Describe Newton's Laws of Motion with examples. SO4.3 Calculateforce and momentum in the given situation.	Laboratory Instruction (P) LE4.1 Plot Velocity -Time diagrams for different combinations of Uniform and non uniform velocities.	Class room Instruction (L) Unit 4.0 Kinematics and Kinetics 4.1 Kinematics in Cartesian and polar coordinates. Concept of speed, velocity, acceleration, radial and transverse velocity, 4.2 Particle under uniform and non-uniform acceleration, tangential and normal acceleration. 4.3 Angular displacement, Angular Velocity, Angular Acceleration. 4.4 Motion under gravity. 4.5 Kinetics of particle,	Self Learning (SL) • Velocity profile
		4.4 Motion under gravity.4.5 Kinetics of particle,	
		force, Newton's Lawsof Motion.	
		principles, Impulsesand angular momentum.	

CO-4 Estimate velocities and accelerations in various linear and curvilinear motions.

SW-4 Suggested Sessional Work (SW):

Assignments:

- i. Solve numerical problems related to velocity and acceleration
- ii. Solve numerical problems related to force and impulse.

Micro Project:

i. Collect information on engineering components/members subjected to tangential and normal acceleration and prepare a report.

- i. Calculate how much force is required to push a stationary Bicycle, Bike and Car and compare it. If we reduce the width of the car tires will the force reduces? Please comment.
- ii. Check how much gradually applied weight is required to press a nail in a wooden board and then compare the same with the weight of the hammer normally used to do the same thing. Please comment on why less weight hammer is capable of doing the same thing.

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

Semester-I

$\textbf{CO-5} \quad \textbf{Calculate power, torque and energy associated with various engineering applications.}$

			((Approx. Hrs: L+P+T=13)
Session Outcomes	La	boratory Instruction	Class room Instruction	Self Learning
(SOs)		(P)	(L)	(SL)
SO5.1 Define work,	LE5.1	Use dynamometer to	Unit-5.0 Work, Power and	Torque
power, energy and		calculate power inany	Energy	
their units of		rotating	5.1 Work-Definition and unit	
measurement		shaft/drum/pulley/wh	of work done, force	
SO5.2 Calculate IHP and		eel.	displacement diagram,	
BHP in the given	LE5.2	Use tachometer to	torque, work done by	
condition		calculate speed of any	torque.	
SO5 3 Calculate Kinetic		rotating	5.2 Power-Definition and	
and Potential		silart/urum/pulley/wit	unit of Power, I.H.P and	
energy of an		661.	B.H.P of engine, Equation	
chiest from the			of H.P in terms of Torque	
object nom the			and R.P.M.	
given uata.			5.3 Energy- Definition and	
SU5.4 Establish relation			units of Energy Kinetic	
between work,			and Potential energy	
Power and Energy.			5.4 Polation botwoon Hoat	
			5.4 Relation between Heat	
			and Mechanical Work,	
			relation between	
			Electrical and Mechanical	
			energy	

SW-5 Suggested Sessional Work (SW) :

Assignments:

- i. Solve problems related to work, power and energy in different domestic and industrial situations.
- ii. Solve numerical problem based on work done by force and torque.
- iii. Solve numerical problem based on computation of IHP and BHP of engines.
- iv. Solve numerical problem based on computation of Kinetic and Potential energy
- v. Convert motor or engine horse power into watts/kilo watts
- vi. In 'Electricity Bill' one UNIT consumption represents what?

Micro Project:

- i. Visit different labs of your institute and collect data related to power, torque and RPM of various actuators like electric motors and engines.
- ii. In case of Electric motors and Batteries calculate electric power it can supply.
- iii. Collect data of IHP and BHP related to two Bikes, Cars, Jeeps and Buses (each) of your locality.

Other Activities (Specify):

i. Collect information on electric cars related to its battery power and correlate it theoretically to the torque and rpm available at wheel if the car is running at 30km/hr.

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB) Sem

CO-6 Select suitable power transmission mode, simple lifting machine and estimate related parameters for various situations.

		(/	Approx. Hrs: $L+P+1=19$
Session Outcomes	Laboratory Instruction	Class room Instruction	Self Learning
(SUs)	(P)	(L)	(SL)
SO6.1 Describe Load, Effort, Mechanical advantage, Velocity ratio, Efficiency SO6.2 Compute Mechanical advantage, Velocity ratio, Efficiency of the given simple machine. SO6.3 Select suitable power transmission mode for the given situation.	 LE6.1 Estimate Mechanical advantage, Velocity Ratio and Efficiency for Simple Screw Jack setup. LE6.2 Estimate Mechanical advantage, Velocity Ratio and Efficiency for Differential Wheel and Axle setup. LE6.3 Demonstration of use of inclined plane as a lifting machine. LE6.4 Estimate Velocity Ratio for a belt-pulley system, simple gear train, worm and worm wheel. 	 Unit-6.0 Simple Lifting Machines and Transmission of power 6.1 Load, Effort, Mechanical advantage, Velocity ratio, Efficiency and relation between them. 6.2 Law of Machine, Reversibility of Lifting machine. 6.3 Study of Machines- Differential wheel and axel, Simple Screw Jack, Pulley block, System of pulleys, Simple and compound levers. 6.4 Transmission of power through Belt (flat belt, V- belt, Timer belt), Rope, Gears (Spur, Helical, worm and worm wheel, rack and pinion) and Gear trains (simple, compound, epycyclic): terminology, classification, salient features, area of application, velocity ratio and efficiency. 	 Study of single and double purchase winch crab machine.

SW-6 Suggested Sessional Work (SW):

Assignments:

- i. Solve numerical problem based on computation of Mechanical advantage, Velocity ratio, Efficiency of simple machines.
- ii. Solve numerical problem based on law of machine.

Mini Project:

- i. Visit different labs of your institute or nearby workshop and collect information about various transmission modes used and related data. Estimate velocity ratio in each case and justify its use in that particular situation.
- ii. Visit a nearby automobile repair shop and list the types of gears used in a bike/moped/scooter.

Semester-I

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

Semester-I

Other Activities (Specify):

- i. Prepare a report on application of timer belt and pulley through internet.
- ii. List the devices in which epicylic gear trains are used.
- iii. Collect the photographs and details of different types of lifting jacks are available in market for lifting and car.

Note: Performance under Laboratory and Sessional work may appear in more than one COs/SOs.

I) Suggested Specification Table (For ESE of Classroom Instruction):

Unit	Unit Titles	Ma	rks Distribu	ition	Total
Number		R	U	Α	Marks
I	Fundamentals and Resolution of Forces	2	2	3	7
II	Centroid and Moment of Inertia	3	4	5	12
111	Friction	2	4	6	12
IV	Kinematics and Kinetics	3	4	5	12
V	Work, Power and Energy	3	4	5	12
VI	Simple Lifting Machines and Transmission of	4	5	6	15
	Power				
	Total	17	23	30	70

Legend: R: Remember, U: Understand, A: Apply and above

J) Suggested Specification Table (For ESE of Laboratory Instruction*):

Laboratory Instruction	Short Laboratory Experiment Titles	Assessment of Laboratory Wor (Marks)			
Number		Performance		Viva-Voce	
		PRA	PDA		
LE1.1	Measure resultant force using law of Triangle of forces setup.	15	10	5	
LE1.2	Measure resultant force using law of Parallelogram of forces setup.	15	10	5	
LE1.3	Measure resultant force using law of Polygon of forces setup.	15	10	5	
LE1.4	Measure resultant force using Lami's Theorem using Jib crane setup.	15	10	5	
LE1.5	Use Funicular diagram to demonstrate Non- concurrent, Non-Parallel forces.	15	10	5	
LE1.6	Measure resultant moment using Law of Moments setup.	15	10	5	
LE2.1	Determine C.G. of a given lamina of any shape using any computer aided drafting software.	15	10	5	
LE2.2	Determine M.I of a given lamina any shape using any computer aided drafting software.	15	10	5	
LE 3.1	Determine coefficient of friction for surfaces of different materials on a Horizontal Plane with given setup.	15	10	5	

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

Semester-I

LE 3.2	Determine coefficient of friction for surfaces of different materials with Inclined Plane apparatus.	15	10	5
LE4.1	Plot Velocity -Time diagrams for different combinations of Uniform and non uniform velocities.	15	10	5
LE5.1	Use dynamometer to calculate power in any rotating shaft/drum/pulley/wheel.	15	10	5
LE5.2	Use tachometer to calculate speed of any rotating shaft/drum/pulley/wheel.	15	10	5
LE6.1	Estimate Mechanical advantage, Velocity Ratio and Efficiency for Simple Screw Jack setup.	15	10	5
LE6.2	Estimate Mechanical advantage, Velocity Ratio and Efficiency for Differential Wheel and Axle setup.	15	10	5
LE6.3	Demonstration of use of inclined plane as a lifting machine.	15	10	5
LE6.4	Estimate Velocity Ratio for a belt-pulley system, simple gear train, worm and worm wheel.	15	10	5

*Assessment rubric, process and product check list with rating scale need to be prepared by the course wise teachers for each experiment for conduction and assessment of laboratory experiments /practicals ,

Legend: PRA: Process Assessment, PDA: Product Assessment

Note: Only one experiment has to be performed at the End Semester Examination of 30 marks as per assessment scheme.

K) Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Industrial visits
- 6. Industrial Training
- 7. Field Trips
- 8. Portfolio Based Learning
- 9. Role Play
- 10. Demonstration
- 11. ICT Based Teaching Learning (Video Demonstration, CBT, Blog, Face book, Mobile)
- 12. Brainstorming
- 13. Others

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

Semester-I

L) Suggested Learning Resources:

(a) Books :

S.No.	Titles	Author	Publisher and Edition*
1	Applied Mechanics	Khurmi, R.S.	S.Chand & Co. New Delhi 2014
			ISBN: 9788121916431
2	Applied Mechanics	S.S.L Patel	Dhanpat Rai & Company
3	Foundations and	Ram, H. D.; Chauhan,	Cambridge University Press,
	Applications of Applied	А. К.	Thomson Press India Ltd., New Delhi, 2015,
	Mechanics		ISBN: 9781107499836
4	Engineering Mechanics-	Meriam, J. L.; Kraige,	Wiley Publication, New Delhi,
	Statics, Vol. I	L.G.	ISBN: 978-81-265-4396
5	Engineering Mechanics	Ramamrutham, S.	S Chand & Co. New Delhi 2008
			ISBN:9788187433514

*Latest edition of all above books should be referred

(b) Open source software and website address:

- 1. http://www.asnu.com.au
- 2. www.youtube.com for videos regarding machines and applications, friction
- 3. www.nptel.ac.in
- 4. www.discoveryforengineers.com

(c) Others:

- 1. Learning Packages
- 2. Users' Guide
- 3. Manufacturers' Manual
- 4. Lab Manuals

M) List of Major Laboratory Equipment and Tools:

S. No.	Name of Equipment	Broad Specifications	Relevant Experiment Number
1.	Differential axle and wheel	Differential axle and wheel (wall mounted unit with the wheel of 40 cm diameter and axles are insteps of 20 cm and 10 cm reducing diameter.	LE6.2
2.	Universal Force Table	Universal Force Table (Consists of a circular 40 cm dia. Aluminum disc, graduated into 360 degrees.) with all accessories.	LE1.1, LE1.2, LE1.3,
3.	Jib crane setup.	Jib crane setup.	LE1.4
4.	Law of moments apparatus	Law of moments apparatus consisting of a stainless steel graduated beam 12.5 mm square in section, 1m long, pivoted at centre.	LE1.6
5.	Beam Reaction apparatus	Beam Reaction apparatus (The apparatus is with two circular dial type 10 kg.	LE1.1
6.	Models of geometrical figures.	Acrylic models of standard geometrical figures.	LE2.1,LE2.2

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

Semester-I

S. No.	Name of Equipment	Broad Specifications	Relevant Experiment Number
7.	Latest educational version of AutoCAD software	Latest educational version of AutoCAD software	LE2.1,LE2.2
8.	Friction apparatus	Friction apparatus for motion along horizontal and inclined plane (base to which a sector with graduated arc and vertical scale is provided. The plane may be clamped at any angle up to 45 degrees. pan. Two weight boxes (each of 5 gm, 10 gm, 2-20 gm, 2-50 gm, 2-100 gm weight),	LE 3.1, LE 3.2, LE6.3
9.	Dynamometer and Tachometer	Dynamometer and Tachometer	LE5.1, LE5.2
10.	Simple screw Jack	Simple screw Jack (Table mounted metallic body , screw with a pitch of 5 mm carrying a double flanged turn table of 20 cm diameter.	LE6.1
11.	Worm and worm wheel	Norm and worm wheel Worm and worm wheel (wall mounted unit with threaded spindle, load drum, effort wheel; with necessary slotted weights, hanger and thread)	
12.	Single Purchase Crab winch	Single Purchase Crab winch (Table mounted heavy cast iron body. The effort wheel is of C.I. material of 25 cm diameter mounted on a shaft of about 40mm dia. On the same shaft a geared wheel of 15 cm dia.	LE6.1 to LE6.4
13.	Double Purchase Crab winch	Double Purchase Crab winch (Having assembly same as above but with double set of gearing arrangement.)	LE6.2
14.	Weston's Differential pulley block	Weston's Differential pulley block (consisting of two pulleys; one bigger and other smaller.	LE6.2
15.	Weston's Differential worm geared pulley block	Weston's Differential worm geared pulley block (Consists of a metallic (preferably steel) cogged wheel of about 20 cm along with a protruded load drum of 10 cm dia to suspend the weights of 10 kg, 20 kg-2 weights and a 50 kg weights)	LE6.2

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

Semester-I

N) Mapping of POs and PSOs with COs:

Course Outcomes		Programme Outcomes (POs)							Programme Specific Outcomes (PSOs)					
	(COs)	PO-1 Basic knowledge	PO-2 Discipline knowledge	PO-3 Experime nts and practice	PO-4 Engineeri ng Tools	PO-5 The engineer and society	PO-6 Environment and sustainabilit y	PO-7 Ethics	PO-8 Individual and team work	PO-9 Commun ication	PO-10 Life-long learning	PSO-1	PSO-2	PSO-3
CO-1	Identify the force systems for different conditions using concepts of mechanics.	2	3	3	2	1	1	1	2	2	2	-	2	-
CO-2	Find the Centroid and Centre of gravity of various engineering components.	3	2	1	2	1	1	1	2	2	2	2	1	1
CO-3	Estimate force of frictionin various conditions.	3	2	2	1	1	1	1	2	2	2	-	2	1
CO-4	Estimate velocities and accelerations invarious linear and curvilinear motions.	2	2	2	1	1	1	1	2	2	2	1	2	1
CO-5	Calculate power, torque and energy associated with various engineering applications.	2	3	2	2	1	1	1	2	2	3	-	2	1
CO-6	Select suitable power transmission mode, simple lifting machine and estimate related parameters for various situations.	2	3	3	2	1	1	1	2	2	3	-	2	1

Legend: 1 – Low, 2 – Medium, 3 – High

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

O) Course Curriculum Map:

POs & PSOs No.	COs No. & Titles	SOs No.	Laboratory Instruction (P)	Classroom Instruction (L)	Self Learning (SL)
PO - 1, 2, 3, 4, 5,	CO-1 Identify the force systems for	SO1.1	LE1.1	Unit-1.0 Fundamentals and	
6, 7, 8, 9, 10	different conditions using	SO1.2	LE1.2	Resolution of Forces	
	concepts of mechanics.	SO1.3	LE1.3	1.1,1.2,1.3,1.4,1.5, 1.6, 1.7	
PSOs - 2		SO1.4	LE1.4		
		SO1.5	LE1.5		
			LE1.6		
PO - 1, 2, 3, 4, 5,	CO-2 Find the Centroid and Centre	SO2.1	LE2.1	Unit-2.0 Centroid and Moment	
6, 7, 8, 9, 10	of gravity of various	SO2.2	LE2.2	of Inertia	
PSOs – 1, 2, 3	engineering components.	SO2.3		2.1, 2.2, 2.3, 2.4, 2.5	
PO - 1, 2, 3, 4, 5,	CO-3 Estimate force of friction in	SO3.1	LE3.1	Unit-3.0 Friction	
6, 7, 8, 9, 10	various conditions.	SO3.2	LE3.2	3.1, 3.2, 3.3, 3.4	
		SO3.3	LE3.3		As mentioned
PSOs – 2, 3		SO3.3			in relevant
PO - 1, 2, 3, 4, 5,	CO-4 Estimate velocities and	SO4.1	LE4.1	Unit-4.0 Kinematics and	pages
6, 7, 8, 9, 10	accelerations in various linear	SO4.2		Kinetics	
PSOs - 1, 2, 3	and curvilinear motions.			4.1, 4.2, 4.3, 4.2, 4.4, 4.5, 4.6	
PO - 1, 2, 3, 4, 5,	CO-5 Calculate power, torque and	SO5.1	LE5.1	Unit-5.0 Work, Power and	
6, 7, 8, 9, 10	energy associated with various	SO5.2	LE5.2	Energy	
	engineering applications.	SO5.3		5.1, 5.2, 5.3, 5.4	
PSOs – 2, 3		SO5.4			
PO - 1, 2, 3, 4, 5,	CO-6 Select suitable power	SO6.1	LE6.1	Unit-6.0 Simple Lifting	
6, 7, 8, 9, 10	transmission mode, simple	SO6.2	LE6.2	Machines and Transmission of	
	lifting machine and estimate	SO6.3	LE6.3	power	
PSOs – 2, 3	related parameters for various situations.		LE6.4	6.1, 6.2, 6.3, 6.4	

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB) Semester-I

A)	Course Code	: 2000178(011)
B)	Course Title	: Applied Chemistry
C)	Pre-requisite Course Code and Title	:
D)	Dationala	

D) Rationale

Diploma engineers have to deal with various materials. The study of concepts of chemistry and application parts from applied chemistry like atomic structures, chemical bonding, water treatment and analysis, electrochemistry and batteries, metals, alloys, insulators, fuels and combustion will help in understanding the technology courses where emphasis is laid on the applications of these concepts and principles in different technology applications. This course is designed by which fundamental information will help the technologists to apply the basic concepts and principles of chemistry to solve broad-based problems.

E) Course Outcomes:

- CO-1 Solve various engineering problems applying the basic knowledge of atomic structure and chemical bonding.
- CO-2 Use relevant water treatment method to solve industrial problems.
- CO-3 Solve the engineering problems using concept of Electrochemistry.
- CO-4 Solve the engineering problems by applying the knowledge of metallurgical process and Metals Alloys.
- CO-5 Use relevant fuel and lubricants for industrial applications.

F) Scheme of Studies:

S.No	Board of	Course	Course	Scheme of Studies (Hours/We		ours/Week)	
	Study	Code	Title	L	Р	T	Total Credits(C) L+T+(P/2)
1	Applied Science	2000178 (011)	Applied Chemistry	2	-	1	3
2	Applied Science	2000191 (011)	Applied Chemistry (Lab)	-	2	-	1

Legend: L: Classroom Instruction (Includes different instructional strategies i.e. Lecture and others), P: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies),T- Tutorial includes Sessional Work(SW) (assignment, seminar, mini project etc.) and Self Learning(SL), C:Credits

Note: SW and SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning Scheme of Assessment:

G)

S.No	Board of Study	Course Code	Course Title	Scheme of Examination					nination
	otaay	oode	inte	Theory		Practical		Total	
				ESE	СТ	TA	ESE	TA	Marks
1	Applied Science	2000178 (011)	Applied Chemistry	70	20	30	-	-	120
2	Applied Science	2000191 (011)	Applied Chemistry (Lab)	-	-	-	30	50	80

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB) Semester-I

Note: i. Separate passing is must for TA component of Progressive assessment, both for theory and practical. ii. Separate passing is must for End Semester Exam (Theory) and End Semester Exam (Practical).

H) Course-Curriculum Detailing:

bonding.

This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (L), Laboratory Instruction (P), T- Tutorial Includes Sessional Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Session Outcomes (SOs) and finally Course Outcomes (COs) upon the completion of course.

CO-1 Solve various engineering problems applying the basic knowledge of atomic structure and chemical

Sossion Outcomes (SOs)	Laboratory	Class room Instruction	Self Learning
Session Outcomes (SOS)	Instruction (P)	(L)	(SL)
SO1.1 Determine the		Unit-1.0 Atomic Structure and Chemical	Discovery of
electronic structure		Bonding	electrons,
of the given atom		1.1 Atomic Structure	protons and
for the material		1.1.1 Electronic structure of atoms,	noutrons
used in industry.		1.1.2 Discovery of electrons, protons	neutrons.
SO1.2 Calculate the		and neutrons.	
quantum numbers		1.1.3 Rutherford model and Bohr's –	
for various energy		Burry scheme of distributions of	
levels of industrially		electrons.	
applicable metals.		1.1.4 Heisenber's uncertainty	
SO1.3 Use theory of		principle,	
chemical bonding		1.1.5 Quantum numbers, sub energy	
for identification of		level	
differentproperties		1.1.6 Distribution of electrons in sub-	
material used in		shells and concept of Electronic	
the industries.		configuration of atoms,	
		1.1.7 Auffbaus's rule,	
		1.1.8 Pauli's exclusion principle.	
		1.1.9 Hund's rule of maximum	
		multiplicity.	
		1.2 Chemical Bonding	
		1.2.1 Theory of Chemical Bonding,	
		1.2.2 Types of Bonds,	
		a. lonic or electrovalent bonds,	
		b. Covalent bond,	
		c. coordination bond,	
		d. Hydrogen bonding.	

CSVTU, Bhilai

(Approx. Hrs:L+P+T=14)

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB) Set

Semester-I

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Write electronic structure of the given atoms.

b. Mini Project:

- i. Prepare Rutherford model and Bohr's Burry models.
- ii. Create element cards with different elements showing covalent and ionicbonds.

c. Other Activities (Specify):

i. Seminar on Quantum numbers.

CO-2 Use relevant water treatment method to solve industrial problems.

(Approx. Hrs:L+P+T=18)

Session Outcomes	Laboratory Instruction (P)	Class room Instruction (L)	Self Learning
(SOs)			(SL)
SO2.1 Perform	LE2.1 Determine total	Unit-2.0 (A) Water Treatment	 Hardness
water	hardness, temporary	2.1 Hardness	 Types of
softening for	hardness and	2.1.1 Types of Hardness	Hardness
the industrial	permanent hardness of	2.1.2 Determination of hardness	
hard water.	water sample by EDTA	using EDTA method	
SO2.2 Use the	method.	2.2 Hard water	
relevant	LE2.2 Determine the	2.3 Boiler Problems	
water	alkalinity of given	2.3.1 Boiler corrosion	
treatment	water sample.	2.3.2 caustic embrittlement	
method for	LE2.3 Determine the turbidity	2.3.3 priming and foaming,	
municipal	in given water sample	2.3.4 scales and sludges	
water.	by Nephelometric	2.4 Water softening:	
SO2.3 Differentiate	method.	2.4.1 lime sodaprocess	
Natural and	LE2.4 Determine the total	a. Hot lime soda	
Synthetic	dissolved and	process	
Rubbers.	suspended solids in	b. Cold lime soda	
	given water sample.	process,	
	LE2.5 Determine the	2.4.2 Zeolite process,	
	biological oxygen	2.4.3 lion exchange	
	demand in the given	process	
	water sample.	a. Cation exchange	
		b. Anion exchange	
		2.5 Municipal Water	
		Treatment,	
		2.5.1 Sedimentation	
		2.5.2 Coagulation	
		2.5.3 Filtration	
		2.5.4 Sterilization	
		2.6 BOD & COD	

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB) Semester-I

Session Outcomes (SOs)	Laboratory Instruction (P)	Class room Instruction (L)	Self Learning (SL)	
		Unit-2.0 (B) Polymer		
		2.1 Classification of polymer		
		2.1.1 Types of		
		rubber		
		2.1.2 Natural and, synthetic,		
		2.1.3 Processing of		
		natural rubber.		
		Syntheticrubber		
		2.1.4 Properties and		
		applications of Buna-		
		N, Thiokol, Neoprene.		

SW-2 Suggested Sessional Work (SW) :

a. Assignments:

i. Prepare model to find the soap foaming capacity of bore water on addition of soda ash.

b. Mini Project:

- i. Collect water samples from different water sources and find the characteristics like acidity, conductivity, dissolved solids, suspended particles.
- ii. Collect 3 to 5 water samples to find the dosage of bleaching powder required for its sterilization.

- i. Seminar on impurities in municipal water Conduct a seminar on " ".
- ii. Visit the municipal water treatment plant.
- iii. Visit the DM water plant.

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

Semester-I

CO-3 Solve the engineering problems using concept of Electrochemistry.

(Approx. Hrs:L+P+T=18)

Session Outcomes (SOs)	Laboratory Instruction (P)	Class room Instruction (L)	Self Learning (SL)
Session Outcomes (SOs) SO3.1 Describe the factors affecting of Conductance. SO3.2 Explain Electrical conductance in metals and Electrolytes SO3.3 Describe the different types of Electrodes & Batteries. SO3.4 Define Electrical Insulator and its classification	Laboratory Instruction (P) LE3.1 Determine the conductance of the given solution by conductometric titration. LE3.2 Determine the variation of conductance with temperature for the given Electrolytes. LE3.3 Determine the conductivity of given water sample. LE3.4 Determine the pH for given solution using glass electrode. LE3.5 Determine the voltage generated from chemical reaction using Daniel Cell.	Class room Instruction (L) Unit-3.0 (A) Electrochemistry and Batteries 3.1 Conductance: 3.1.1 Nature of solute, 3.1.2 Nature of solvent, 3.1.3 Temperature, 3.1.4 Concentration or dilution. 3.2 Electrical conductance in metals and electrolytes, 3.2.1 specific conductance, 3.2.2 equivalent conductance, 3.2.3 cell constant. 3.3 Electrodes: 3.3.1 Hydrogen electrode, 3.3.2 calomel electrode 3.3.3 glass electrode 3.4 Conductometric Titration 3.5 Batteries 3.5.1 Type of batters with examples 3.5.2 Primary battery 3.5.3 Secondary battery Unit-3.0 (B) Electrical Insulator and thermocouple alloy 3.1 Electrical insulators:	Self Learning (SL) Conductance: • Nature of solute, • Nature of solvent, • Temperature, • Concentration or dilution.
	reaction using Daniel Cell.	Unit-3.0 (B) Electrical Insulator and thermocouple alloy 3.1 Electrical insulators: 3.1.1 Classification and example 3.2 Thermocouple alloy: Composition and characteristics 3.2.1 platinum /rhodium.	
		3.2.2 tungsten/ rhenium,	

SW-3 Suggested Sessional Work (SW) :

a. Assignments:

- i. Prepare the chart displaying working process of lithium ion and Ni & Cd batteries.
- ii. Prepare the model, expressing the working process of fuel cell.
- iii. Prepare chart showing properties of Thermocouple alloy.

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

Semester-I

b. Mini Project:

- i. Collect the samples of different types of electrodes used in various batteries and prepare a report on their conductance.
- ii. Prepare the working model of Daniel cell and calculate the current flow by Daniel cell.
- iii. Collect the sample of alloying elements like Pt, Ni, W, Fe and prepare a report of their effects on the properties of thermocouple Alloy.

c. Other Activities (Specify):

- i. Organize quiz on Electric Conductivity.
- ii. Organize quiz on metal insulators.

CO-4 Solve the engineering problems by applying the knowledge of metallurgical process and Metals Alloys.

Session Outcomes	Laboratory Instruction	Class room Instruction (L)	Self Learning
(SOs)	(P)		(SL)
SO4.1 Extract the ore from chemical reaction for industrial application SO4.2 Prepare the metal alloyfor industrial application. SO4.3 Use the Refractory material for industrial applications.	LE4.1 Determine the percentage of copper in given copper ore. LE4.2 Standardization of KMnO₄ solution using standard oxalic acid and Determine the percentage of iron present in given Hematite ore by KMnO₄ solution.	 Unit- 4.0 (A) Metallurgy 4.1 Metallurgy: 4.1.1 Mineral, 4.1.2 Ore, 4.1.3 Gangue, 4.1.4 Flux, 4.1.5 Slag. 4.2 Metallurgical process of iron and copper Unit- 4.0 (B) Metal Alloys 4.1 Properties of metals like copper, aluminum, tungsten, platinum nickel. 4.2 Ferrous alloys: 4.2.1 Low carbon 4.2.2 Medium carbon 4.2.3 High carbon steels. 4.3 Non-ferrous alloy: 4.3.1 Brass, 4.3.2 Bronze, 4.3.3 Duralumin, 4.3.4 Tinman Solder 4.3.5 Woods metal Unit-4.0 (C) Cement: 4.1 Portland cement, 4.1.1 Constituent 4.1.2 Setting and Hardening. 	• Properties of metals like copper, aluminum, tungsten, platinum nickel.

(Approx. Hrs:L+P+T=14)
Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

Semester-I

SW-4 Suggested Sessional Work (SW) :

a. Assignments:

- i. Prepare chart showing properties of refractory materials.
- ii. Prepare chart showing different industrial application of metal and relate it with required property or properties using internet.
- iii. Prepare chart of showing percentage composition, properties and industrial applications of different types of steel based on above alloying elements using internet.

b. Mini Project:

- i. Collect different samples of cement and find their initial and final setting time.
- ii. Find the effect of alloying elements like Mn, Cr, Ni, W, V, Co on properties of steel.

c. Other Activities (Specify):

- i. Organize quiz on metal properties, Alloy and ores.
- ii. Visit Metal industries to learn metallurgy process.

CO-5 Use relevant fuel and lubricants for industrial applications.

(Approx. Hrs:L+P+T=16)

Session Outcomes	Laboratory Instruction (P)	Class room Instruction (L)	Self Learning
(SOs)			(SL)
SO5.1 Select the	LE5.1 Determine the	Unit-5.0 (A) Fuel and	Classification of
relevant fuel for	moisture content, ash	Combustion	fuel.
industrial	and volatile matter in	5.1 Fuel: Calorific value and	 Solid fuel
applications.	given coal sample	ignition temperature,	classification.
SO5.2 Test the quality	using proximate	classification.	- Ostanonumbar
of coal for	analysis.	5.2 Solid fuels: Coal,	Octanenumber ord Cotono
industrial uses.	LE5.2 Determine the	Classification and	
SO5.3 Perform	calorific value of the	composition ,	number.
fractional	given solid fuelusing	5.2.1 Proximate	
distillation	Bomb calorimeter.	analysis,	
process for	LE5.3 Determine the effect	5.2.2 Ultimate analysis,	
refining of	of temperature on	5.2.3 Bomb	
petroleum in	viscosity for given	calorimeter.	
industries.	lubricating oil using	5.2 4 Carbonization of coke	
SO5.4 Test the	Redwood viscometer	by Otto Hofmann's	
properties of the		oven.	
given lubricant	LE5.4 Determine the flash	5.3 Liquid fuels:	
for industrial	and fire point of given	5.3.1 Fractional	
applications.	lubricating oil using	distillation of	
SO5.5 Identify the	Cleavland open cup	crude petroleum,	
different	apparatus.	5.3.2 Boiling range,	
ingredients of	LE5.5 Determine the	5.3.3 Composition and	
paints and	cloud and pore point	properties.	
varnish for	of the given lubricant.	5.3.4 Knocking,	
engineering	LE5.6 Separate the various	5.3.5 Cracking,	

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

Semester-I

Session Outcomes (SOs)	Laboratory Instruction (P)	Class room Instruction (L)	Self Learning (SL)
applications.	fractions of the given sample of petroleum using fractional distillation.	5.3.6 Octane number and Cetane number. 5.4 Gaseous fuels: 5.4.1 Biogas, LPG, and CNG. 5.4.2 Combustion equation of gaseous fuels,	
		Unit 5.0 (B) Lubricants, Paints and Varnishes 5.1 Lubricant- 5.1.1 Types, a. Liquid b. Solid c. Semisolid 5.1.2 Theory of lubrication, 5.1.3 Properties of a good lubricants 5.1.4 Flash and Fire point, 5.1.5 Pour paint and	
		cloud point. 5.1.6 Specification number and viscosity, 5.2 Paints and Varnish 5.2.1 Constituents, 5.2.2 Properties and uses.	

SW-5 Suggested Sessional Work (SW) :

a. Assignments:

- i. Prepare chart showing different types of liquid fuels their calorific values and uses.
- ii. Prepare a chart differentiating proximate and ultimate analysis of Coal.
- iii. Prepare the comparative chart of commercially available lubricants on the basis of mechanism of lubrication.
- iv. Prepare the chart displaying applications of different paints and Varnish.

b. Mini Project:

- i. Prepare a report on effect of LPG and CNG on environment
- ii. Collect the sample of various lubricants and prepare the report about properties and uses.

c. Other Activities (Specify):

- i. Seminar on combustion of gaseous fuel.
- ii. Visit the paint industry.

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB) Sem

Semester-I

I) Suggested Specification Table (For ESE of Classroom Instruction):

Unit		ution	Total		
Number		R U A			Marks
I	Atomic Structure and Chemical Bonding	6	5	3	14
	Water Treatment and Polymer	3	4	7	14
	Electrochemistry, Batteries, Insulator and Electrical Thermocouple	6	4	4	14
IV	Metallurgy, Metal Alloys and Cements	3	5	6	14
V	Fuel and Combustion, Lubricants, Paints Varnish	6	3	5	14
Total			21	25	70

Legend: R: Remember, U: Understand, A: Apply and above

J) Suggested Specification Table (For ESE of Laboratory Instruction*):

Laboratory Instruction	Short Laboratory Experiment Titles	Assessmer Perfor	ry Work Viva-		
number		PRA	PDA	Voce	
LE2.1	Complexometric Titration	15	10	5	
LE2.2	Alkalinity	15	10	5	
LE2.3	Turbidity	15	10	5	
LE2.4	TDS & SS	20	05	5	
LE2.5	BOD	12	13	5	
LE3.1	Conductometric titration	15	10	5	
LE3.2	Conductometer	17	08	5	
LE3.3	Conductometer	18	07	5	
LE3.4	pH meter	16	09	5	
LE3.5	Daniel cell	15	10	5	
LE4.1	Percentage of Cu	16	09	5	
LE4.2	Percentage of Fe	16	09	5	
LE5.1	Proximate analysis	15	10	5	
LE5.2	Bomb calorimeter	15	10	5	
LE5.3	Redwood viscometer-I	16	09	5	
LE5.4	Cleaveland open cup	16	09	5	
LE5.5	Cloud and pore point	16 09 5			
LE5.6	Fractional distillation	15 10 5			

* Assessment rubric, process and product check list with rating scale need to be prepared by the course wise teachers for each experiment for conduction and assessment of laboratory experiments /practicals,

Legend : PRA: Process Assessment, PDA : Product Assessment

Note: Only one experiment has to be performed at the end semester examination of **30 Marks** as per assessment scheme

K) Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Industrial visits
- 6. Industrial Training

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB) Semester-I

- 7. Field Trips
- 8. Portfolio Based Learning
- 9. Role Play
- 10. Demonstration
- 11. ICT Based Teaching Learning (Video Demonstration, CBT, Blog, Face book, Mobile)
- 12. Brainstorming
- 13. Others

L) Suggested Learning Resources:

(a) Books :

S. No.	Titles	Author	Publisher	Edition & Year
1	Engineering Chemistry	Agarwal, Shikha	Cambridge university press ; New Delhi,	2015
2	Engineering Chemistry	Dara, S. S. and Dr.S.S.Umare	S.Chand. Publication, New Delhi,	2015
3	Engineering Chemistry	Jain & Jain	Dhanpat Rai and sons; New Delhi	2015
4	Engineering Chemistry	Dr.Vairam, S.	Wiley India Pvt.Ltd., New Delhi\	2013
5	Chemistry for engineers	Agnihotri, Rajesh	Wiley India Pvt.Ltd.	2014

(b) Open source software and website address :

- 1. www.chemguide.co.uk/atommenu.html (Atomic structure and chemical bonding)
- 2. <u>www.visionlearning.com</u> (Atomic structure and chemical bonding)
- 3. <u>www.chem1.com</u> (Atomic structure and chemical bonding)
- 4. https://www.wastewaterelearning.com/elearning/ (Water Treatment)
- 5. www.chem1.com/acad/webtext/elchem/ec6.html (Electrochemistry and batteries)
- 6. www.em-ea.org/guide%20books/book 2/2.1%20fuels%20and%20combustion.pdf (Fuel and Combustion)
- 7. www.chemcollective.org (Metals, Alloys)
- 8. <u>www.wqa.org</u>(Water Treatment)

(c) Others:

- 1. Learning Packages.
- 2. Lab Manuals.
- 3. Manufacturers' Manual
- 4. Users' Guide

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

Semester-I

M) List of Major Laboratory Equipment and Tools:

S. No.	Name of Equipments	Broad Specifications	Relevant Experiment Number		
1	Electronic balance,	scale range of 0.001g to 500g. pan size 100 mm; response time 3-5 sec.; power requirement 90- 250 V, 10 watt.	All		
2	Nephelometer	Auto-ranging from 20-200 NTU,+/- 2% of reading plus 0.1 NTU, power 220 Volts +/- 10% AC 50 Hz.	LE 2.3		
3	Conductometer	Range 0-199.9ms; resolution 0.1ms/0.01ms/0.001ms/0.1µs/0.01µs; accuracy ±0.5% ±2 digits	LE3.2		
4	pH meter	Working range 0-14; resolution 0.1/0.01 pH; temperature compensation 0-100 ⁰ C	LE3.4		
5	Electric oven	inner size 18''x18''x18''; temperature range 100 to 250° C. with the capacity of 40lt.	LE 5.1		
6	Muffle furnace,	nace, Temperature up to 900 ⁰ C, digital temperature controller with an accuracy of +/- 3 ⁰ C			
7	Bomb calorimeter	Measurement unit J/kg, cal/gm, BTU/lb; temp. resolution 0.0001 ^o C or better; combustion bomb- halogen and acid resistant stabilized stainless steel; resolution 0.001kcal/gm; measurement range up to 40,000 J/gm	LE 5.2		
8	Redwood viscometer-1	Suitable to operate at 220 volts AC mains with tap ; stainless steel jet; cup cover; thermometer ;electronic digital indicator ; controller etc	LE5.3		
9	Cleavland open cup apparatus	Energy regulator-to regulate the rate of rise in temperature; 220V; 50 Hz; single phase; AC supply	LE5.4		
10	Cloud and pore point apparatus	Energy regulator ,to regulate the rate of rise in temperature,200V,50Hz, single phase,AC supply etc.	LE 5.5		
11	Fractional distillation assembly	Capacity 1.5 It.	LE 5.6		

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

Semester-I

N) Mapping of POs & PSOs with COs:

Course Outcomes (COs)	Programme Outcomes (POs)									Programme Specific Outcomes (PSOs)		
	PO-1 Basic knowledge	PO-2 Discipline knowledge	PO-3 Experiments and practice	PO-4 Engineering Tools	PO-5 The engineer and society	PO-6 Environment and sustainability	PO-7 Ethics	PO-8 Individual and team work	PO-9 Communic ation	PO-10 Life-long learning	PSO-1	PSO-2
CO-1 Solve various engineering problems applying the basic knowledge of atomic structure and chemical bonding.	3	1	1	-	-	-	1	2	2	1	-	1
CO-2 Use relevant water treatment method to solve industrial problems.	3	1	3	3	2	2	1	3	1	2	1	1
CO-3 Solve the engineering problems using concept of Electrochemistry	3	1	2	2	1	2	-	3	2	2	-	1
CO-4 Solve the engineering problems by applying the knowledge of metallurgical process and Metals Alloys	3	1	3	3	-	2	-	3	1	2	1	1
CO-5 Use relevant fuel and lubricants for industrial applications.	3	1	3	2	1	1	-	2	1	2	1	1

Legend: 1 – Low, 2 – Medium, 3 – High

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

Semester-I

O) Course	D) Course Curriculum Map:									
POs & PSOs No.	COs No. & Titles	SOs No.	Laboratory Instruction (P)	Classroom Instruction (L)	Self Learning (SL)					
PO-1,2,3,7,8,9,10	CO-1 Solve various engineering	SO1.1		Unit-1.0 Units , Atomic Structure						
	problems applying the basic	SO1.2		and Chemical Bonding						
PSO-2	knowledge of atomic structure	SO1.3		1.1 , 1.2						
	and chemical bonding.									
PO-1,2,3,4,5,6,	CO-2 Use relevant water treatment	SO2.1	LE2.1	Unit-2.0 (A) Water Treatment						
7,8,9,10	method to solve industrial	SO2.2	LE2.2	2.1, 2.2, 2.3, 2.4, 2.5, 2.6						
	problems.	SO2.3	LE2.3	Unit-2.0 (B) Polymer						
PSO-1,2			LE2.4	2.1, 2.2, 2.3, 2.4						
			LE2.5							
PO-1,2,3,4,5,6,	CO-3 Solve the engineering	SO3.1	LE3.1	Unit-3.0 (A) Electrochemistry and						
8,9,10	problems using concept of	SO3.2	LE3.2	batteries						
500.0	Electrochemistry	\$03.3	LE3.3	3.1, 3.2, 3.3						
PSO-2		503.4	LE 3.4	thermocouple allows	As mentioned in					
			LE3.5	3.1, 3.2	relevant pages					
PO-1,2,3,4,6,	CO-4 Solve the engineering	SO4.1	LE4.1	Unit-4.0 (A) Metallurgy						
8,9,10	problems by applying the	SO4.2	LE4.2	4.1, 4.2						
	knowledge of	SO4.3		Unit-4.0 (B) Metal alloys						
PSO-1,2	metallurgical process and			4.1, 4.2, 4.3						
	Metals Alloys.			Unit-4.0 (C) Cement						
				4.1						
PO-1,2,3,4,5,	CO-5 Use relevant fuel and	SO5.1	LE5.1	Unit-5.0 (A) Fuel and Combustion						
6,8,9,10	lubricants for industrial	SO5.2	LE5.2	5.1, 5.2 , 5.3, 5.4						
	applications.	SO5.3	LE5.3	Unit-5.0 (B) Lubricants paints and						
PSO-1,2		SO5.4	LE5.4	varnishes						
		SO5.5	LE5.5	5.1, 5.2						
			LE5.6							

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB) Semester-I

A)	Course Code	: 2000177(037)
B)	Course Title	: Engineering Drawing
C)	Pre-requisite Course Codeand Title	:
D)	Rationale	:

Engineering Drawing is a language of engineers that enables them to visualize the ideas converting to realization by drawing them. It helps in communicating the shape, size, finish, color and construction of any object and aids in improving the concepts, imagination and visualization power of an engineer. It is a graphical language that communicates all the information about an object from an engineer, who designed it, to an artisan who will make it. This course aims at developing the ability to draw and read various scales, engineering curves, projection of line point and plane, isometric projection and introduces the application of Computer aided drafting software like AutoCAD software for drafting of engineering drawings thereby building the foundation for digital drawing environment for further courses related engineering drawing.

E) Course Outcomes:

- CO-1 Use drawing instruments, scales, and standard norms to create drawings.
- CO-2 Draw various engineering curves.
- CO-3 Draw the projection of points, lines and planes with different conditions.
- CO-4 Interpret and draw the orthographic and sectional views of an object.
- CO-5 Develop isometric view from orthographic views of objects.
- CO-6 Use computer aided drafting software to draw 2D geometric entities.

F) Scheme of Studies:

S.No	Board of	Course	Course	Scheme of Studies (Hours/We		urs/Week)	
	Study	Code	l itie -	L	Р	Т	Total Credits(C) L+T+(P/2)
1	Mechanical Engineering	2000177 (037)	Engineering Drawing	2	-	1	3
2	Mechanical Engineering	2000192 (037)	Engineering Drawing (Practical)	-	2	-	1

Legend: L: Classroom Instruction (Includes different instructional strategies i.e. Lecture and others), P: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies), T- Tutorial includes Sessional Work (SW) (assignment, seminar, mini project etc.) and Self Learning (SL), C: Credits

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB) Semester-I

G) Scheme of Assessment:

S.No	Board of Study	Course Code	Course Title	Scheme of Examination			nination			
	otady	ooue	inte	Theory		Theory Practical		Practical		Total
				ESE	СТ	TA	ESE	TA	Marks	
1	Mechanical	2000177	Engineering Drawing	70	20	30	-	-	120	
	Engineering	(037)								
2	Mechanical Engineering	2000192 (037)	Engineering Drawing (Practical)	-	-	-	30	50	80	

Note: i. Separate passing is must for TA component of Progressive assessment, both for theory and practical. ii. Separate passing is must for End Semester Exam (Theory) and End Semester Exam (Practical).

H) Course-Curriculum Detailing:

This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (L), Laboratory Instruction (P), T- Tutorial Includes Sessional Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Session Outcomes (SOs) and finally Course Outcomes (COs) upon the completion of course.

CO-1 Use drawing instruments, scales, and standard norms to create drawings.

(Approx. Hrs: L+P+T = 09)

Session Outcomes	Laboratory	Class room Instruction		Self Learning (SL)
(SOs)	Instruction (P)	(L)		
SO1.1 Select and use	LE 1.1 Draw	Unit-1.0 Basics of Engineering	•	Different typeof
the drawing	Lettering, types	Drawing		drawing and
instruments.	of lines, methods	1.1 Importance of engineeringdrawing.		instruments
SO1.2 Write	of dimensioning	1.2 Drawing instruments: Use of		
annotations in	from Plain scale	drawing board, mini drafter,		
drawing.	& Diagonal scale	compass, divider, protractor,		
SO1.3 Choose	each on a single	drawing sheets, drawing pencils, set		
appropriate line	drawing sheet.	squares etc., sheet layout, title		
for a given		block, folding of drawing sheets.		
geometrical		1.3 Lettering and numbering as per BIS		
entity.		9609, importance, single stroke		
SO1.4 Choose		letters, slanting letters, upper case		
factor for the		and lower case letters, general		
drawing as per		procedure for lettering and		
given situation.		numbering, height of letters.		
SO1.5 Choose		1.4 Lines- Different types of lines.		
dimensioning		Scales - full scale, reduced scale and		
style for a given		enlarged scale.		
geometrical		1.5 Dimensioning – terms and notations		
entity.		as per BIS, requirement of		
		dimensioning - Dimension line,		

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB) Semester-I

Session Outcomes (SOs)	Laboratory Instruction (P)	Class room Instruction (L)	Self Learning (SL)
		Extension lines and Leader lines,	
		Dimensioning systems, Methods of	
		dimensioning, important	
		dimensioning rules.	

SW-1 Suggested Sessional Work (SW):

Assignments:

- i. Draw triangles, without using a protractor, having base angles of 75° and 15° & 105° and 45° on a 75 mm long line as base.
- ii. Prepare a neat sketch of 'title block' giving all details in a given drawing sheet.
- iii. Write freehand with single stroke, vertical capital letters of 3mm height.
- iv. Sketch the difference between progressive and parallel dimensioning.
- v. Draw a simple scale for a given set of data.

Mini Project:

i. Collect production and construction drawings from nearby industries/shop and builders respectively and prepare a list of types of letters, scales and dimensioning used.

CO-2 Draw various conic curves.

(Approx. Hrs: L+P+T = 11)

Session Outcomes (SOs)	Laboratory	Class room Instruction	Self Learning
	Instruction (P)	(L)	(SL)
SO2.1 Draw an ellipse	LE 2.1 Draw	Unit-2.0 Constructions of conic curves	 Involutes of a
for a given set of	Parabola, Ellipse	2.1 Conic Sections- Definition of locus,	circle
data.	and Hyperbola by	focus, directrix, axis, Vertex and	Cvcloid
SO2.2 Draw a parabola	general and	eccentricity. Definition: ellipse,	, , , , , , , , , , , , , , , , , , ,
for a given set of	special methods	parabola and hyperbola.	
data.	shoot	2 2 Ellipse: Construction of ellipse by	
SO2.3 Draw a hyperbola	Sheet.	concentric circle method, Oblong	
for a given set of		method, Arc of circle method and	
data.		Eccentricity method or General	
SO2.4 Identify various		Method when focus and directrix are	
Conic curves used		given.	
in different		2.3 Parabola: Construction of parabola	
components.		by rectangle method, parallelogram	
		method Tangent method and	
		eccentricity method or General	
		Method when focus and directrix	
		aregiven.	
		2.4 Hyperbola: Construction of	
		hyperbola by rectangular method	
		and eccentricity method when focus	
		and directrix are given	
		and an oot in a c given.	

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB) Semester-I

SW-2 Suggested Sessional Work (SW) :

Assignments:

- i. Draw an ellipse for a given set of data and write its equation also.
- ii. Draw a parabola for a given set of data.
- iii. Draw a hyperbola for a given set of data.

Mini Project:

- i. Explore the applications of engineering curves in different fields of engineering and prepare a short report.
- Other Activities (Specify):
 - i. Collect production and construction drawings from nearby industries/shop and builders respectively and prepare a list of types of conic curves used.
 - ii. Prepare a list of industrial and household components in which conic curves are used and justify the utility of these curves.
 - iii. Observe the effect of changing eccentricity in case of parabola and hyperbola.
 - iv. Write the equations for parabola in different quadrants.
 - v. Through experimentation, justify that the eccentricity of an ellipse is 1.

CO-3 Draw the projection of points, lines and planes with different conditions.

Session Outcomes	Laboratory Instruction (P)	Class room Instruction (L)	Self Learning (SL)
(SOs)			
SO3.1 Draw the	LE 3.1 Draw the problems	Unit-3.0 Projections of	 Projections on
projection of	on projection of points and	points, lines and planes	auxiliary planes
points for a	lines on a drawing sheet.	3.1 Projection of points:	
given set of	LE 2.2 Draw the projection	Concept of quadrant, first	
conditions.	of given Planes on a	angle and third angle	
SO3.2 Draw the	drawing sheet	projection. Projection of	
projection of		points – points on	
line for a given		different quadrants and	
conditions		on the reference planes.	
		3.2 Projection of straight	
SU3.3 Draw the		lines: Projection of	
plojection of		straight lines – Line in the	
given set of		first quadrant and on the	
conditions.		reference Planes,	
		perpendicular to one	
		plane and parallel to	
		other plane inclined to	
		one plane and parallel to	
		the other plane parallel	
		to both the planes and	
		inclined to both the	
		planes.	
		3.3 Projection of Planes:	

(Approx. Hrs: L+P+T = 14)

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB) Semester-I

Session Outcomes (SOs)	Laboratory Instruction (P)	Class room Instruction (L)	Self Learning (SL)
		 Concept of planes, a) Projection of planes parallel to one of the reference plane. b) Projection of plane inclined to one reference plane and perpendicular to another. c) Projection of plane inclined to both the reference planes. Note: Triangle, Square / rectangle and circle shape should be included in Various plane problems. 	

SW-3 Suggested Sessional Work (SW) :

a. Assignments:

- i. Draw the projection of points for a given set of conditions.
- ii. Draw the projection of lines for a given set of conditions.
- iii. Draw the projection of planes for a given set of conditions.

b. Mini Project:

- i. Cut triangular, square, rectangular and circular shaped cardbord/thermocole pieces and observe them by placing in different positions as specified in 3.3.
- ii. Cut a cardbord/thermocole cone with various section planes to get circle, ellipse, parabola and hyperbola.

c. Other Activities (Specify):

i. Collect production and construction drawings from nearby industries/shop and builders respectively and observe projection of various shaped planes.

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB) Se

Semester-I

CO-4 Interpret and draw the orthographic and sectional views of an object.

(Approx. Hrs: L+P+T = 16)

Session Outcomes	Laboratory	Class room Instruction	Self Learning (SL)
(SOs)	Instruction (P)	(L)	
SO4.1 Draw	LE 4.1 Draw the	Unit-4.0. Orthographic projection and Section	View video
Orthographic	Orthographic	of solids	programmes
views of a	projections of a	4.1 Introduction, First angle projection, Third	related to
given object.	given object with	angle projection, Symbols and comparison	orthographic
SO4.2 Draw	and without	of first and third angleprojections.	projection.
Sectional views of	drawing sheet	4.2 Projection of simple objects – front view/	
a given object.	drawing sheet.	top view/ right/ left side view.	
	LE 4.2 Draw the	4.3 Concept of sectioning planes, Auxiliary	
	projections of a	planes, types of sections and true shape	
	solids and section	of section.	
	of given solids on a drawing sheet	4.4 Projections of Solids: Types of solids,	
	drawing sheet.	projections of solids in simple position,	
		projections of solids with axes inclined	
		to one of the reference planes and	
		parallel to the other, projections of	
		solids with axes inclined to both H.P. and	
		the V.P.	
		4.5 Section of solids, Practice problems for	
		drawing projections and section of	
		solids.	

SW-4 Suggested Sessional Work (SW) :

a. Assignments:

- i. Draw minimum three drawing sheets on orthographic views of simple machine parts.
- ii. Draw minimum three drawing sheets on sectional views of objects.

b. Mini Project

- i. Visit your institute's workshop and draw top, front and side views of single point cutting tool.
- ii. Take a medium sized hexagonal nut and draw its top and front view.

c. Other Activities (Specify):

i. Collect production and construction drawings from nearby industries/shop and builders respectively and observe the type of orthographic projection, symbol of projection and various views used.

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

Semester-I

CO-5 Develop isometric view from orthographic views of objects.

		(Ap	oprox. Hrs: L+P+1) = 12)
Session Outcomes (SOs)	Laboratory Instruction (P)	Class room Instruction (L)	Self Learning (SL)
SO5.1 SO5.1 Draw Isometric view from orthographic views of given objects	LE 5.1 Draw isometric views of simple machine elements	 Unit-5.0 Isometric Projection 5.1 Isometric axis, lines, and planes, isometric scale, isometric projection, isometric drawing. 5.2 Isometric projection of objects containing rectangular, circular, cylindrical shapes and slots on sloping and plane Surfaces. 	 View video programmes related to this outcome.

SW-5 Suggested Sessional Work (SW):

a. Assignments:

i. Draw minimum three sheets on isometric views.

b. Mini Project:

i. Take a medium sized hexagonal nut and draw its isometric projection

c. Other Activities (Specify):

i. Collect production and construction drawings/photographs in which isometric, oblique and perspective projections are used.

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB) Set

Semester-I

CO-6 Use Computer aided Drafting software like AutoCAD to draw 2D geometricentities.

		(Ар	pro	ox. Hrs: L+P+T = 18)
Session Outcomes	Laboratory	Class room Instruction (L)		Self Learning
(SOs)	Instruction (P)			(SL)
Session Outcomes (SOs) SO6.1 Use computer aided drafting software like AutoCAD for creating simple drawings.	Laboratory Instruction (P) LE 6.1 Draw minimum two drawings using AutoCAD software.	 (Ap Class room Instruction (L) Unit-6.0 Computer aided Drafting 6.1 Basics of AutoCAD AutoCAD interface, screen layout, starting commands from menus, Coordinate system, Angular measurements, Point specification, Drawing aids - Grid, Snap, Ortho, Osnap, Units, Limits, Layers, Linetype. 6.2 Creating basic drawings Drawing objects - lines, arc, circles, ellipses, polyline and polygons. 	•	ox. Hrs: L+P+T = 18) Self Learning (SL) View video programmes related to Auto Cad to draw 2D geometric entities.
		and polygons. 6.3 Modify commands - erase, copy, move, rotate, scale,		
		stretch, array. 6.4 Printing and plottingof drawings.		
1	1	1	1	

SW-6 Suggested Sessional Work (SW):

a. Assignments:

i. Draw minimum five drawings using AutoCAD software.

b. Mini Project:

- i. Prepare an A4 template of your institute with title block and institute logo.
- ii. Prepare a spur gear of 20° pressure angle using array command.

c. Other Activities (Specify):

i. Collect atleast two AutoCAD tutorial videos from web and submit them to your teacher.

Note: Performance under Laboratory and Sessional work may appear in more than one COs/SOs.

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB) Se

Semester-I

Unit		P	/larks Distribut	ion	Total
Number	Unit Ittles	R	U	Α	Marks
I	Basics of Engineering Drawing	2	2	6	10
II	Constructions of conics	2	2	6	10
111	Projections of point, line and planes	-	-	12	12
IV	Orthographic Projection and Section of solids	2	2	10	14
V	Isometric Projection	2	-	10	12
VI	Computer aided Drafting	2	-	10	12
	Total	10	6	54	70

I) Suggested Specification Table (For ESE of Classroom Instruction):

Legend: R: Remember, U: Understand, A: Apply and above

J) Suggested Specification Table (For ESE of Laboratory Instruction*):

Laboratory Instruction	Short Laboratory Experiment Titles	Assessment of Laboratory Work (Marks)			Marks are allocated for performance
Number		PRA	PDA	Viva- Voce	following
LE1.1	Draw Lettering, types of lines, methods of dimensioning and one problem from Plain scale & Diagonal scale each on a single drawing sheet.	15	10	5	performance parameters:
LE2.1	Draw Parabola, Ellipse and Hyperbola by general and Special methods on a drawing sheet.	15	10	5	drawings as per schedule
LE3.1	Draw the problems on projection of points and lines on a drawing sheet.	15	10	5	Neatness, Cleanliness on all
LE3.2	Draw the projection of given Planes on a drawing sheet.	15	10	5	prepared drawing sheets
LE4.1	Draw the Orthographic projections of a given object with and without section on a drawing sheet.	15	10	5	 Uniformity in drawing and line
LE4.2	Draw the projections of a solids and section of given solids on a drawing sheet.	15	10	5	• Dimensioning the
LE5.1	Draw isometric views of simple machine elements.	15	10	5	given drawing and
LE6.1	Draw minimum two drawings using AutoCAD software.	15	10	5	 Visualization and drawing ability

*Assessment rubric, process and product check list with rating scale need to be prepared by the course wise teachers for each experiment for conduction and assessment of laboratory experiments /practicals,

Legend: PRA: Process Assessment, PDA: Product Assessment

Note: Only one experiment has to be performed at the end semester examination of **30 Marks** as per assessment scheme

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB) Semester-I

K) Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Industrial visits
- 4. Industrial Training
- 5. Field Trips
- 6. Portfolio Based Learning
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration, CBT, Blog, Face book, Mobile)

L) Suggested Learning Resources:

(a) Books :

S. No.	Titles	Author	Publisher and Edition*
1	Engineering Drawing	N.D. Bhatt	Charotar Publisher
2	Engineering Drawing	R.B. Gupta	Satya Prakashan
3	Engineering Drawing	Gujral & Shende	Khanna Publisher
4	Engineering Drawing	R.K.Dhawan	S.Chand
5	Engineering Drawing	P.J.Shah	S.Chand
6	Engineering Drawing	M.B.Shah, B.C.Rana	Pearsons
7	Engineering Graphics with	A.K.Sarkar, A.P.Rastogi,	PHI
	AutoCAD	D.M. Kulkarni	
8	Engineering Drawing and	T. Jeyapoovan	Vikas
	Graphics using AutoCAD		

*Latest edition of all above books should be referred

(b) Open source software and website address:

- 1. Introduction: <u>https://www.youtube.com/watch?v=z4xZmBpXIzO</u>
- 2. dimensioning system : https://www.youtube.com/watch?v=OF3S6BjMKsI
- 3. Basic of engineering drawing : <u>https://www.youtube.com/watch?v=FEju-hA5Peo</u>
- 4. Engineering scales : <u>https://www.youtube.com/watch?v=n9iQcttWHAo</u>
- 5. Engineering curves : <u>https://www.youtube.com/watch?v=8sZkhL64-Qw&list=PLeFT-Ztj-s49OnKf3zO10MhVBH16GvZLn</u>
- 6. Conic section : https://www.youtube.com/watch?v=1AMyZ-WzPB0
- 7. 1st and 3rd angle projection : <u>https://www.youtube.com/watch?v=mcxUTNkSyp4</u>
- 8. Orthographic projection : <u>https://www.youtube.com/watch?v=nDmwL1IWolc</u>
- 9. Projection of point : <u>https://www.youtube.com/watch?v=Wy10RORC0s8</u>
- 10. Projection of line: https://www.youtube.com/watch?v=UewSQ061MzM
- 11. Projection of plane : <u>https://www.youtube.com/watch?v=KWuW5VZf9a0</u>
- 12. Basic of isometric projection : <u>https://www.youtube.com/watch?v=p7Tz17Af-zE</u>

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB) Semester-I

- 13. Isometric projection : <u>https://www.youtube.com/watch?v=k2frX4CXJ_Y</u>
- 14. Auto cad : <u>https://www.youtube.com/results?search_query=autocad+for+</u> beginners+in+hindi+
- 15. Auto cad : <u>https://www.youtube.com/watch?v=ohjh0JjQHnY</u>
- 16. Auto cad : <u>https://www.youtube.com/watch?v=ZugYdLxsg0E</u>
- 17. Nptel Web reference : <u>http://nptel.ac.in/courses/112103019/15</u>

(c) Others:

- 1. Learning Packages.
- 2. Manufacturers' Manual

M) List of Major Classroom Instruction Aid Equipments and Tools:

S. No.	Name of Equipment	Broad Specifications	Relevant Experiment Number
1	Computer aided drafting software like AutoCAD	Latest educational licensed network version	LE6.1
2	CAD workstations	latest configuration	LE6.1
3	Drawing boards	A1 size	LE1.1, LE2.1, LE3.1, LE3.2, LE4.1, LE4.2, LE5.1
4	Interactive board (165 x 130 cm)	Supports dual touch, dual write and intuitive gestures, such as toss, rotate and zoom, available with multitouch operating systems, such as Windows®	All
5	Printer/plotter	A3 size	LE6.1
6	Models for projection and demonstration	Wooden models	LE2.1, LE3.1, LE3.2, LE4.1, LE4.2, LE5.1

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

Semester-I

Course Outcomes (COs)		Programme Outcomes (POs)							Programme Specific Outcomes (PSOs)				
	PO-1 Basic knowledge	PO-2 Discipline knowledge	PO-3 Practice	PO-4 Engineerin g Tools	PO-5 The engineer and society	PO-6 Environment and sustainability	PO-7 Ethics	PO-8 Individual and team work	PO-9 Commu nication	PO-10 Life-long learning	PSO- 1	PSO- 2	PSO- 3
CO-1 Use drawing instruments, scales, and standard norms to createdrawings.	3	3	2	3	1	1	1	1	1	3	-	-	-
CO-2 Draw various conic curves.	3	2	3	2	1	1	2	1	2	3	-	-	-
CO-3 Draw the projection of points, lines and planes with different conditions.	2	2	2	2	1	1	1	1	3	3	-	-	
CO-4 Interpret and draw the orthographic & sectional views of an object.	2	3	2	2	1	1	1	1	3	3	-	-	-
CO-5 Develop isometric view from orthographic views of objects.	3	3	3	2	1	1	2	1	3	3	-	-	-
CO-6 Use computer aided drafting software like AutoCAD to draw 2D geometric entities.	3	3	3	2	1	1	2	1	3	3	3	-	-

N) Mapping of POs & PSOs with COs:

Legend: 1 – Low, 2 – Medium, 3 – High

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

O) Course Curriculum Map:

POs & PSOs No.	COs No. & Titles	SOs No.	Laboratory Instruction (P)	Classroom Instruction (L)	Self Learning (SL)
PO-1,2,3,4,5,6,	CO-1 Use drawing instruments,	SO1.1	LE1.1	Unit-1.0 Basics of Engineering	
7,8,9,10	scales, and standard norms	SO1.2		Drawing	
	to create drawings.	SO1.3			
		SO1.4		1.1, 1.2, 1.3, 1.4, 1.5	
		SO1.5			
PO-1,2,3,4,5,6,	CO-2 Draw various conic curves.	SO2.1	LE2.1	Unit-2.0 Construction of Conics	
7,8,9,10		SO2.2			
		SO2.3		2.1, 2.2 ,2.3	
		SO2.4			
PO-1,2,3,4,5,6,	CO-3 Draw the projection of	SO.3.1	LE3.1, LE3.2	Unit-3.0 Projection of points,	
7,8,9,10	points, lines and planes with	SO3.2		lines and planes	As mentioned
	different conditions.	SO3.3		3.1, 3.2, 3.3	in relevant
PO-1,2,3,4,5,6,	CO-4 Interpret and draw the	SO4.1	LE4.1, LE4.2	Unit-4.0 Orthographic projection	pages
7,8,9,10	orthographic and sectional	SO4.2		and Section of solids	
	views of an object	SO4.3		4.1, 4.2	
PO-1,2,3,4,5,6,	CO-5 Develop isometric view from	SO5.1	LE5.1	Unit-5.0 Isometric Projection	
7,8,9,10	orthographic views of	SO5.2			
	objects.			5.1, 5.2	
PO-1,2,3,4,5,6,	CO-6 Use computer aided drafting	SO6.1	LE6.1	Unit-6.0 Computer aided Drafting	
7,8,9,10	software like AutoCAD to	SO6.2			
	draw 2D geometric entities.	SO6.3			
		SO6.4			

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

:

:

:

Semester-I

- A) Course Code
- : 2000180(037)
- B) Course Title

Workshop Practice

- C) Pre- requisite Course Code and Title
- D) Rationale

Mechanical Workshop practice is an essential requirement to understand the working and execution of jobs in industrial environment. This course intends to impart basic know-how of various tools, methods and their use at different stages of manufacturing. This course will develop skills in handling tools, instruments, equipments used in the workshop and perform operations in various shops and enhance relevant technical skills required to work in an industry along with the understanding of the complexity of the industrial job.

E) Course Outcomes:

- CO-1 Use measuring devices and hand tools effectively.
- CO-2 Undertake wood working operations economically and safely.
- CO-3 Perform various joining operations using welding, brazing and soldering methods.
- CO-4 Perform different types of fitting and sheet metal operations.
- CO-5 Prepare simple jobs using lathe.

F) Scheme of Studies:

	Board of	Course	Course Title	Sche	eme of	Studi	es (Hours/Week)
S.NO	Study	oode	The	L	Р	Т	Total Credits(C) L+T+(P/2)
1	Mechanical Engineering	2000180(037)	Workshop Practice	1	-	-	1
2	Mechanical Engineering	2000193(037)	Workshop Practice (Practical)	-	4	-	2

Legend: L: Classroom Instruction (Includes different instructional strategies i.e. Lecture and others), P: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies), T- Tutorial includes Sessional Work (SW) (assignment, seminar, mini project etc.) and Self Learning(SL), C:Credits

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning

F) Scheme of Assessments:

	Board of	Course	Course		S	cheme o	of Exan	nination	
S.No	Study	Code	Title		Theor	у	Pra	actical	Total
	,			ESE	СТ	ТА	ESE	ТА	Marks
1.	Mechanical Engineering	2000180(037)	Workshop Practice	-	-	30	-	-	30
2.	Mechanical Engineering	2000193(037)	Workshop Practice (Lab)	-	-	-	50	30	80

Note: i. Separate passing is must for TA component of Progressive assessment, both for theory and practical. ii. Separate passing is must for End Semester Exam (Theory) and End Semester Exam (Practical).

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

Semester-I

(Approx. Hrs: L+P+T = 14)

H) Course-Curriculum Detailing:

This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (L), Laboratory Instruction (P), T- Tutorial Includes Sessional Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Session Outcomes (SOs) and finally Course Outcomes (COs) upon the completion of course.

CO-1 Use measuring devices and hand tools effectively.

Session Outcomes Laboratory Instruction **Class room Instruction** Self Learning (SL) (SOs) (P) (L) LE1.1 Identify different Unit- 1.0 Measurement, Hand tools and SO1.1 List various Collect the type of measuring measuring workshop safety. information tools available in 1.1 Engineering Measurement: tools and related to instrument. workshop. definition, importance and Types of various hand SO1.2 Describe LE1.2 Use suitable measurements. tools listed. measuring unit Marking and hand 1.2 Measuring instruments: linear and its tools in a given measurement and angular conversion. situation. measurement instruments. SO1.3 Select suitable LE1.3 Measure the given 1.3 Measuring devices: Linear measuring job using suitable measurement and angular measuring Devices. devices in a measurement devices. LE1.4 Perform mock drill given 1.4 Workshop hand tools: List the session in group of situation. various hand tools used in SO1.4 List workshop minimum 15 workshops. hand tools. students for 1.5 Workshop Safety – Safety Practices, SO1.5 Describe extinguishing fire. Causes of accidents, General safety Safety rules, Safety signs and symbols. procedure in Firefighting equipment, fire different extinguishers, and their types and

SW-1 Suggested Sessional Work (SW):

Assignments:

workshops.

i. Select any engineering object / part / drawing and perform the measurement using suitable measuring device.

First Aid

Mini Project:

i. Visit nearby mechanical workshop and collect information about operation peformed by identified workshop and prepare the list of tools and equipment alongwith specification.

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

Semester-I

CO-2 Undertake wood working operations economically and safely.

		(Ap)	p(0x, 1) = 1
Session Outcomes (SOs)	Laboratory Instruction (P)	Class room Instruction (L)	Self Learning (SL)
SO2.1 List various wood working tools with major specifications. SO2.2 Select wood working tools as per given job. SO2.3 Demonstrate various wood working operations. SO2.4 Explain procedure to prepare given type of joint.	LE2.1 Prepare one simple job of wood working comprises of marking, cutting, plaining and finishing as per given drawing/sketch. LE2.2 Prepare any two wooden joints safely as per given drawing.	 Unit- 2.0 Wood Working Shop 2.1 Types of woods and artificial woods and their applications. 2.2 wood working tools –bench vice, hammers, chisel, files, hacksaw, wood saw, surface planer, punch, v block, try square , steel rule , twist drill, marking block, reamers, tap set, mallet and their specification. 2.3 Wood working operations – Marking ,Cutting , reaming , filing, drilling, joining, 2.4 Types of wood working joint – Butt joint , lap joint, Bridle joint , Dowel joint, Mitre joint , finger joint , dovetail joint , Dado joint, Groove joint, Cross lap, splice joint. 2.5 Applications of various joints. 	Collect the information on various types and appearance of wood being used in packaging of industrialproducts using internet facility.

SW-2 Suggested Sessional Work (SW):

Assignments:

i. Select any (Minimum 3 finished jobs) different wood working / carpentry jobs and prepare list of different types of woods and joints used in selected objects.

Mini Project:

i. Make a wooden job as per given drawing and specifications of material.

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

Semester-I

CO-3 Perform various joining operations using welding, brazing and soldering methods.

		(Арр	prox. Hrs: $L+P+I = 17$)
Session Outcomes (SOs)	Laboratory Instruction (P)	Class room Instruction	Self Learning
		(L)	(SL)
SO3.1 Perform various types of joining methods. SO3.2 Select suitable welding method as per job requirement. SO3.3 Explain arc welding and gas welding procedure.	 LE3.1 Operate gas welding apparatus to generate different types of flames. LE3.2 Prepare lap joint using gas welding as per given drawing safely. LE3.3 Prepare butt joint using arc welding as pergiven drawing safely. LE3.4 Mount the given electronic component on Printed circuit board (PCB) in a given situation. LE3.5 Join the given aluminum sheet by using brazing. 	 Unit- 3.0 Joining Methods : 3.1 Joining methods- Various types of Joining Methods and their field application and types of weldingjoint. 3.2 Arc welding 3.2.1 Arc weldingprocess, equipment with necessary accessories, Welding electrode, tools and consumables 3.3 Personal protective equipment like safety glasses, welding gloves etc and safe practices in welding shop. 3.4 Gas welding 3.4.1 Gas weldingprocess, Equipment with necessary accessories, Types like Carburizing, oxidizing and neutral flame. 3.5 Soldering and brazing: specification, filler material, flux, heating methods, temperature range, advantages, and comparison. 	 Collect the information on various types of welding electrodes and their industrial applications.

SW-3 Suggested Sessional Work (SW):

Assignments:

i. Select any two joining method and prepare their engineering field of application.

Mini Project:

i. Prepare any utility job like lab stool structure by using suitable welding process with list of tools and equipment along with specification.

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

Semester-I

CO-4 Perform different type of fitting and sheet metal operation.

		(Аррг	OX. HIS: L+P+I = I8)
Session Outcomes (SOs)	Laboratory Instruction (P)	Class room Instruction	Self Learning (SL)
		(L)	
SO4.1 Identify various tools used in fitting shop. SO4.2 Select relevant tools as per given job in fitting shop. SO4.3 Perform various fitting operations. SO4.4 Peform various sheet metal operations.	 LE4.1 Prepare one simpleJob of fitting shop as per given drawing and instruction. LE4.2 Prepare one male – female type Fitting Jobs as per given Drawing. LE4.3 Prepare one sheet metal job using cutting, bending, edging and joining operations as per given drawing. 	 Unit- 4.0 Fitting and Sheet metal Shop. 4.1 Fitting tools – Hand tools used in fitting shop, holding tools, Marking and measuring tools, cutting tools. 4.2 Fitting Operation –Sawing, Chipping, Filling, Taping, Reaming and Drilling. 4.3 Sheet metal tools-listof sheet metal tools used. 4.4 Sheet metal operation- Shearing, Bending, Drawing, Squeezing, Snipping, riveting, Grooving. 	Using internet facility and collect the information related to field applications of sheet metal.

SW-4 Suggested Sessional Work (SW):

Assignments:

i. Prepare simple jobs as per drawing and instructions given.

Mini Project:

i. Prepare file stand by using by suitable material and sheet metal operations.

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

Semester-I

(Approx. Hrs: L+P+T = 14) **Class room Instruction** Self Learning (SL) Session Outcomes (SOs) Laboratory Instruction (P) (L) SO5.1 Explain working LE5.1 Prepare one simple Unit- 5.0 Lathe Machine Collect data on principle of lathe turning job as pergiven 5.1 Concept, Workingprinciple, various machine. drawing. constructional details and applications of SO5.2 Explain various LE5.2 Perform drilling/ major components of lathe lathe machine components of lathe knurling/threading machine with their for engineering machine. operation to prepare functions. applications. SO5.3 Describe job and job as per given 5.2 Job and tool holding tool holding devices. drawing. devices and lathe SO5.4 Calculate speed, feed, depth of cut f attachments - head stock, lathe machine tail stock, tool post, Lathe SO5.5 Perform simple lathe tools, chucks (3 and 4 Jaw), operations. name and advantages of lathe attachment. 5.3 Lathe operations – Plain turning, Facing, taper turning, Knurling, Threading etc.

CO-5 Prepare simple jobs using lathe

SW-5 Suggested Sessional Work (SW):

Assignments:

i. Visit the institute workshop and prepare a report comprises of names of different machine tools / tools their specifications and manufacturer's name.

Mini Project:

- i. Visit the nearby workshop /machine shop and prepare the field report comprises of the following
 - a. Product(s) name
 - b. List of machine tools with associated accessories,
 - c. List of lathe tools with relevant accessories
 - d. List major clients.

Note: Performance under Laboratory and Sessional work may appear in more than one COs/SOs.

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

Semester-I

J) Suggested Specification Table (For ESE of Laboratory Instruction*):

Laboratory Instruction	Short Laboratory Experiment Titles	Assessment of Laboratory Work (Marks)			
Number		Perfor	mance	Viva-	
		PRA	PDA	Voce	
LE1.1	Measuring tools available in workshop.	30	15	5	
LE1.2	Marking and hand tools in a given situation.	30	15	5	
LE1.3	Mock drill session for extinguishing fire	35	10	5	
LE2.1	Preparation of simple wooden job.	25	20	5	
LE2.2	Preparation of two wooden joints	25	20	5	
LE3.1	Operate gas welding apparatus	30	15	5	
LE3.2	Preparation of lap joint using gas welding	25	20	5	
LE3.3	Preparation of butt joint using arc welding	25	20	5	
LE3.4	Mounting of electronic components on PCB	30	15	5	
LE3.5	Joining of aluminum sheet by using brazing.	25	20	5	
LE4.1	Preparation of simple fitting job.	25	20	5	
LE4.2	Preparation of simple male –female type fitting job.	25	20	5	
LE4.3	Preparation of sheet metal job .	25	20	5	
LE5.1	Preparation of simple turning job.	25	20	5	
LE5.2	Preparation of simple drilling/ knurling /threading using lathe	25	20	5	

*Assessment rubric, process and product check list with rating scale need to be prepared by the course wise teachers for each experiment for conduction and assessment of laboratory experiments /practical's

Legend: PRA: Process Assessment, PDA: Product Assessment

Note: Only one experiment has to be performed at the end semester examination of **50 Marks** as per assessment scheme

K) Suggested Instructional/Implementation Strategies:

- 2. Improved Lecture Method
- 3. Industrial visits
- 4. Expert Lecture
- 5. Field Trips
- 6. Self Learning
- 7. Portfolio Based Learning
- 8. Observation, Practice and Feedback
- 9. Classroom, Laboratory, Workshop, Field, Video, Live Demonstrations
- 10. Real Model
- 11. Charts
- 12. Demonstration
- 13. ICT Based Teaching Learning (Video Demonstration, CBT, Blog, Face book, Mobile) can be integrated with many method

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

Semester-I

L) Suggested Learning Resources:

(a) Books :

<u> </u>				
S. No.	Titles	Author	Publisher	Edition &
				Year
1	Workshop Practice	Bawa, H.S.	McGraw Hill Education,	Latest
			Noida;	
			ISBN: 978-0070671195	
2	A Textbook of	Gupta, J.K.; Khurmi,	S.Chand and Co. New	Latest
	Manufacturing Process	R.S.	Delhi ISBN:81-219-3092-	
	(Workshop Tech.)		8	
3	Introduction to Basic	Singh, Rajender	New Age International,	Latest
	Manufacturing Process &		New Delhi; 2014, ISBN:	
	Workshop Technology		978-81-224-3070-7	
4	Elements of Workshop	Hajra; Choudhary;	Media Promoters and	Latest
	Technology		Publishers Mumbai,	
			2009, ISBN: 10-	
			8185099146	

(b) List of open source software/learning website :

- 1. Measuring device : <u>https://www.youtube.com/watch?v=3M4rsWBYaIA</u>
- 2. Precision measuring device : <u>https://www.youtube.com/watch?v=JX8gHdNpamk</u>
- 3. Angular measuring device : <u>https://www.youtube.com/watch?v=dgkLbX4cqr4</u>
- 4. Workshop hand tools: <u>https://www.youtube.com/watch?v=4o0tqF0jDdo</u>
- 5. Wood working joint: <u>https://www.youtube.com/watch?v=UDQ_aS8qvaU</u>
- 6. Woodworkingtools:<u>https://www.youtube.com/watch?v=aCe9dNzCVQU</u>
- 7. Joining method : <u>https://www.youtube.com/watch?v=rFKtP_6w4B0</u>
- 8. Arc welding: <u>https://www.youtube.com/watch?v=ZQ7vdwjmX80</u>
- 9. Gas welding process:_ https://www.youtube.com/results?search_query=gas+welding+process+animation
- 10. Types of flame: <u>https://www.youtube.com/watch?v=10LppHw6GRE</u>
- 11. Types of welding process: <u>https://www.youtube.com/watch?v=CCzhT81GrBo</u>
- 12. Soldering and brazing : <u>https://www.youtube.com/watch?v=BpIzRtQAMw0</u>
- 13. Welding safety equipment : <u>https://www.youtube.com/watch?v=S1H_mV3Webo</u>
- 14. Fitting shop : <u>https://www.youtube.com/watch?v=dVxjT5kkhFc</u>
- 15. Sheet metal operation : <u>https://www.youtube.com/watch?v=95rgHM58dgw</u>
- 16. Drilling operation : https://www.youtube.com/watch?v=zf9rqvzjkpY
- 17. Shearing operation : <u>https://www.youtube.com/watch?v=VMu7_W0QE3Y</u>
- 18. Drawing operation : <u>https://www.youtube.com/watch?v=MQwHMebFuZM</u>
- 19. Lathe component: https://www.youtube.com/watch?v=YQznrRi3heQ
- 20. Lathe Machine operation : <u>https://www.youtube.com/watch?v=OgqsjZJwce8</u>
- 21. Work holding devices : <u>https://www.youtube.com/watch?v=jP1-IzLtXRw</u>
- 22. Working principle of lathe : <u>https://www.youtube.com/watch?v=NgbbB1tdmo4</u>

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

Semester-I

(c) Others:

- 1. Learning Packages.
- 2. Lab Manuals.
- 3. Manufacturers' operating Manual

M) List of Major Laboratory Equipment and Tools:

S. No.	Name of Equipment	Broad	Relevant
		Specifications	Experiment Number
	Measuring Instruments	Vernier calliper, Micrometer outside & inside,	LE1.1 & 1.2
1.		Bevel protractor, Pair of Inside spring calliper 150	
		mm, Pair of outside spring calliper- 250 mm	
2.	Vernier height Gauge	Vernier height Gauge 450 mm	LE1.1 & 1.2
3.	Surface Plate	Surface Plate 600 x 900 mm Grade I	LE1.1 & 1.2
4.	Angle Plate	Angle Plate 450 x 450 mm	LE1.1 & 1.2
5.	Fire Safety Equipment	Fire buckets of standard size.	LE1.3
6.	Fire Safety Equipment	Fire extinguisher A,B and C types	LE1.3
	Wood Turning Lathe	Wood Turning Lathe Machine, Height of Centre:	LE2.1 & 2.2
-		200mm, Distance between Centers: 1200mm,	
1.		Spindle Bore: 20mm with Taper, Range of Speeds:	
		425 to 2800 with suitable Motor Drive. with all	
		accessories	
0	Circular Saw Machine	Circular Saw Machine, Diameter of saw blade 200	LE2.1 & 2.2
δ.		mm, Maximum Depth of Cut 50 mm, Table Size -	
		350 x 450 mm, Table Tilting - 450	
9.	Wood working tools	Wood working tools- marking and measuring tools,	LE2.1 & 2.2
		saws, claw hammer, mallet, chisels, plans, squares,	
10.	Carpentry Vice	Carpentry Vice 200 mm	LE2.1 & 2.2
11.	Work Benches	Work Benches- size:1800 x 900 x 750 mm	LE4.1 & 4.2
12.	Drilling machine	Bench Drilling machine (up to 13 mm drill cap.)	LE4.1 & 4.2
		with ½ H.P. Motor 1000 mm. Height.	
13.	Power Saw machine	Power Saw machine 350 mm mechanical with 1 HP	LE4.1 & 4.2
		Motor & all Accessories.	
	Bench Grinder	Bench Grinder 200 mm Grinding Disc diameter 200	LE4.1 & 4.2
14.		mm. with 25 mm. bore 32 mm. with ½ HP/1HP	
		Motor.	

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

Semester-I

	Arc Welding machine	Welding machine 20 KVA 400A welding current	LE3.3
15		300A at 50, 100, 200, 250, 300 with std.	
15.		Accessories and Welding Cable 400 amp. ISI with	
		holder	
		Arc welding hand tools- electrode holder, cable	LE3.3
16.		connector, cable lugs, chipping hammer, earthling	
		clamp wire brush	
	PPF	Personal Protective Equipment like safety doves	1F3.3
17.		face shield /screen safety godde apron safety	220.0
		shees and halmat ata	
10	Cas wolding apparatus	Shoes and heimet etc.	1 5 2 2
18.	Gas weiging apparatus	Oxygen and acetylene gas weiging and cutting kit	LE J.Z
		With cylinders and regulators.	
19		Gas weiding hand tools- weiding torch, weiding tip,	LE 3.1 & 3.2
17.		pressure regulator, oxygen and acetylene cylinders,	
		spark lighter	
20.	Pipe Bending Machine	Pipe Bending Machine	
01			
21.	Pipe Vice	Pipe Vice – 100 mm	
22	Dipo Cuttor	Ding Cuttor E0 mm	
22.	Pipe Cutter	Pipe Cutter - 50 mm	
23	Bench Vice	Bench Vice 100 mm	For MiniProjects
23.	Denen vice		
	Portable drill Machine	Portable Hammer Drill Machine 0-13 mm	
24.		$\Lambda \subset 220 \text{ V} = 25 \text{ Amp. Pistol type baying different}$	
		A.C. 250 V, 2.5Amp, Fistor type, having unrelent	
25	Shoot Ponding Machino	Lypes of Dits	1512
20.	Sheet benuing Machine	Sheet benuing wathine	LE4.3
26.	Sheet Cutting Machine	Sheet Cutting Machine	LE4.3
27.	Brazing Equipment	Brazing Equipment	LE3.5
20	Soldering Iron	Soldering iron, Flux for soldering and Solder filler	1F3 <i>1</i>
20.	Soldering non	material.	LLJ.T
29.	РСВ	Various types of electronic components and	LE3.4
_ / ·		Printed Circuit Boards (PCB)	
	Fitting tools	Fitting tools - hammers, chisels, files (smooth &	LE4.1 & 4.2
		rough file, round, flat, safe edge, square, knife	
30		edge, triangular, half round file) hacksaw, surface	
50.		plate punch v block angle plate try square	
		marking block stool rule twist drills reamors tan	
		set die set	
	Dlumbing tools	Set, uie set.	For Mini Drojasta
31.	Plumping tools	Plumbing tools- pipe vice, pipe bending equipment,	FOI WITH Projects
		pipe wrenches, dies.	154.2
30	Sneet metal hand tools	sneet metal hand tools- snip, shears sheet gauge,	LE4.3
JZ.		straight edge, L square, scriber, divider, trammel,	
		punches, pliers, stakes, grooves, limit set	

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

Semester-I

N) Mapping of POs & PSOs with COs:

Course Outcomes (COs)	Programme Outcomes (POs)									Progr C	amme Sj Jutcome (PSOs)	pecific es	
	PO-1 Basic knowledg e	PO-2 Discipline knowledg e	PO-3 Experiment s and practice	PO-4 Engineerin g Tools	PO-5 The engineer and society	PO-6 Environmen t and sustainabilit y	PO-7 Ethics	PO-8 Individual and team work	PO-9 Communi cation	PO-10 Life-long learning	PSO- 1	PSO- 2	PSO- 3
CO-1 Use measuring devices and hand toolseffectively.	2	2	3	3	1	1	1	2	1	1	-	2	2
CO-2 Undertake wood working operations economically and safely.	2	2	3	3	1	1	1	2	1	1	-	2	2
CO-3 Perform various joining operations using welding, brazing and soldering methods	2	2	3	3	1	1	1	2	1	1	-	2	2
CO-4 Perform different types of fitting and sheet metal Operations	2	2	3	3	1	1	1	2	1	1	-	2	2
CO-5 Prepare simple jobs using lathe	2	2	3	3	1	1	1	2	1	1	-	2	2

Legend: 1 – Low, 2 – Medium, 3 – High

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB) Semester-I

0) Course Curriculum Implementation Map:

POs & PSOs No.	COs No. & Titles	SOs No.	Laboratory Instruction (P)	Classroom Instruction (L)	Self Learning (SL)
PO 1,2,3,4,5,6, 7,8,9,10 PSO 2 3	CO-1 Use measuring devices and hand tools effectively.	SO-1.1, 1.2, 1.3, 1.4	LE1.1, 1.2, 1.3	Unit-1.0 Measurement, Hand tools and Workshop Safety. 1.1, 1.2, 1.3, 1.4	
PO 1,2,3,4,5,6, 7,8,9,10 PSO 2,3	CO-2 Undertake wood working operations economically and safely.	\$0-2.1, 2.2, 2.3, 2.4	LE2.1 ,2.2	Unit-2.0 Wood Working Shop. 2.1, 2.2, 2.3	
PO 1,2,3,4,5,6, 7,8,9,10 PSO 2,3	CO-3 Perform various joining operations using welding, brazing and soldering methods	SO-3.1, 3.2, 3.3	LE3.1, 3.2, 3.3, 3.4	Unit-3.0 Joining Methods 3.1, 3.2, 3.3, 3.4	As mentioned in relevant pages
PO 1,2,3,4,5,6, 7,8,9,10 PSO 2,3	CO-4 Perform different types of fitting and sheet metal operations	SO-4.1, 4.2, 4.3, 4.4	LE4.1, 4.2,4.3	Unit-4.0 Fitting and Sheet Metal Shop 4.1, 4.2, 4.3, 4.4	
PO 1,2,3,4,5,6, 7,8,9,10 PSO 2,3	CO-5 Prepare simple jobs using lathe	SO-5.1, 5.2, 5.3, 5.4	LE5.1, 5.2	Unit-5.0 Lathe Machine 5.1, 5.2, 5.3	

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB) Semester-I

A)	Course Code	: 2000194(046)
B)	Course Title	: Seminar & Technical Presentation (Listening, Reading & Speaking)
		Skills
C)	Dro roquisito Courso Codoand Titlo	

C) Pre- requisite Course Code and Title

D) Rationale

Technical Writing and Presentation Skills are core skills to be developed in diploma graduates as students exchange information and convey their ideas and opinions with different stakeholders. Students in technical institutes need to be trained for this. The present curriculum focuses on the attainment of course outcomes related to soft skills, so that the students are confident, self-reliant and capable of presenting themselves appropriately.

E) Course Outcomes :

CO-1 Demonstrate effective listening and reading skills with clarity.

CO-2 Demonstrate appropriate presentation skills using different aids and techniques.

F) Scheme of Studies:

S.No	Board of	Course	Course Title	Scheme of Studies (Hours/Week)			
	Study	Code		L	Ρ	т	Total Credits(C) L+T+(P/2)
1	Humanities	2000194 (046)	Seminar & Technical Presentation(Listening, Reading & Speaking) Skills	-	2	-	1

Legend: L: Classroom Instruction (Includes different instructional strategies i.e. Lecture and others), P: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies), T- Tutorial includes Sessional Work (SW) (assignment, seminar, mini project etc.) and Self Learning(SL), C:Credits

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning

G) Scheme of Assessment:

S.No	Board of Study	Course Code	Course Scheme		of Examination				
	Study	oouc	inte	Theory		Practical		Total	
				ESE	CT	TA	ESE	TA	Marks
1	Humanities	2000194 (046)	Seminar & Technical Presentation(Listening, Reading & Speaking) Skills	-	-	-	-	50	50

Note: i. Separate passing is must for TA component of Progressive assessment, both for theory and practical.

ii. Separate passing is must for End Semester Exam (Theory) and End Semester Exam (Practical).

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB) Semester-I

H) Course-Curriculum Detailing:

This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (L), Laboratory Instruction (P), T-Tutorial Includes Sessional Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Session Outcomes (SOs) and finally Course Outcomes (COs) upon the completion of course.

CO-1 Demonstrate effective listening and reading skills with clarity

(Approx. Hrs:L+P+T=16)

Session Outcomes (SOs)	Laboratory Instruction/Classroom Instruction (P/L)	Self Learning (SL)
SO1-Communicate	1.1 Need of Learning to	One Word Substitution
effectively using correct	learn skills (Listening,	Rearrangement of Jumbled
pronunciation, modulation,	Reading and Speaking)	words
pitch etc.,	1.2 Methods of good study	 Use Synonyms and
	habits	Antonyms appropriately.
	1.3 Practice Loud reading	Reading Current articles
	1.4 Practice Active Listening	from newspaper magazines
	1.5 Practice Speaking in	
	Class(Group Discussion,	
	Extempore, Debate,	
	Role Play etc.,	

CO-2 Demonstrate appropriate Presentation Skills using different aids and techniques.

(Approx. Hrs:L+P+T=16)

Session Outcomes (SOs)	Laboratory Instruction/Classroom Instruction (P/L)	Self Learning (SL)
SO-2	2.1 Characteristics of good oral	Short Stories
Display Different	Presentation	Magazines
Presentation Skills by using	2.2 Ways of oral presentation	Articles etc.
different techniques	2.3 Gestures Mannerism during oral	
	Presentation	
	2.4 Preparing Successful Presentations	
	2.5 Making Effective Use of Visual Aids	

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB) Semester-I

SW- Suggested Sessional Work (SW):

a. Assignments:

Loud reading of given stories by each student in the class.

Similar activity can be done with the help of News papers/Magazines.

b. Mini Project:

Recorded Lectures may be played in the class and students are asked to listen and answer.

c. Other Activities (Specify):

Self-Introduction, Speech and Spell Test.

Note: There will be no end semester examination for laboratory as well as classroom instructions and practical activity will be assessed for term work.

I) Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Demonstration
- 7. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, WhatsApp, Mobile, Online sources)
- 8. Brainstorming

J) Suggested Learning Resources:

(a) Books :

S.	Title	Author	Publisher	Edition & Year
No.				
1	English Grammar in Use	Murphy Raymond	Cambridge Publications	4 th Edition
2	Living English Structure	Allen	Cambridge Publications	Fifth edition(2009)
3	Effective English with CD	Kumar, E. Suresh; Sreehari,P.; Savithri, J.	Pearson Education, Noida, New Delhi	2009 <i>ISBN:</i> 978-81- 317-3100-0
4	English Grammar at Glance	Gnanamurali, M.	S. Chand and Co. New Delhi,	2011 ISBN:9788121929042
5	Elementary English Grammar and Composition	Agarwal N.K.	Goyal Brothers Prakashan	Latest Edition

(b) Open source software and website address:

- 1. <u>https://www.englishgrammar.org/</u>
- 2. http://www.englishgrammarsecrets.com/
- 3. https://www.usingenglish.com/handouts/
- 4. <u>http://learnenglish.britishcouncil.org/en/english-grammar</u>

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB) Semester-I

- 5. <u>https://www.englishclub.com/grammar/</u>
- 6. http://www.perfect-english-grammar.com/
- 7. <u>http://www.englishteachermelanie.com/category/grammar/</u>
- 8. https://www.grammarly.com/blog/category/handbook
- 9. https://www.britishcouncil.in/english/learn-online
- 10. http://learnenglish.britishcouncil.org/en/content
- 11. http://www.talkenglish.com/
- 12. languagelabsystem.com
- 13. www.wordsworthelt.com

(c) Others:

- 1. Learning Packages.
- 2. Lab Manuals.
- 3. Language software Manual
- 4. Users' Guide

K) List of Major Laboratory Equipment and Tools:

S. No.	Name of Equipment	Broad Specifications	Relevant Experiment Number
1	Computers	A complete computer system with headphones & Speakers	All
2	Soft ware	English communication softwares – Globarina, A- One Solutions, Wordsworth, Spears	All
3.	Computer tables & chairs	Depending upon the size of the Language Lab	All
Chhattisgarh Swami Vivekanand Technical University, Bhilai

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

Semester-I

L) Mapping of POs & PSOs with COs:

Course Outcomes (COs)	Programme Outcomes (POs)									Programme Specific Outcomes (PSOs)		
	PO-1 Basic knowledge	PO-2 Discipline knowledge	PO-3 Experime nts and practice	PO-4 Engineering Tools	PO-5 The engineer and society	PO-6 Environment and sustainability	PO-7 Ethics	PO-8 Individual and team work	PO-9 Communic ation	PO-10 Life-long learning	PSO-1	PSO-2
CO-1 Demonstrate effective listening and reading skills with clarity	2	1	1	1	-	-	-	-	2	2	1	1
CO-2 Demonstrate appropriate Presentation Skills using different aids and techniques.	1	1	2	2	-	-	-	-	2	3	1	1

Legend:1 – Low, 2 – Medium, 3 – High

Chhattisgarh Swami Vivekanand Technical University, Bhilai

Diploma in Mechanical/Metallurgy/Mining/Chemical Engineering (Group-IB)

Semester-I

M) Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction(P)	Classroom Instruction (L)	Self Learning (SL)
PO1,2,3,4,9,10 PSO 1,2	CO-1 Demonstrate effective listening and reading skills with clarity	SO1	LE1.1 LE1.2 LE1.3 LE1.4 LE 1.5		
PO 1,2,3,4,9,10 PSO 1,2	CO-2 Demonstrate appropriate Presentation Skills using different aids and techniques.	SO2	LE2.1 LE2.2 LE2.3 LE2.4 LE2.5		

-----000------