

GOVT CO-ED POLYTECHNIC

BYRON BAZAR RAIPUR (C.G.)

LAB MANUAL

Branch: Mechanical Engineering

Year & Semester: 3rd Year & 6th Semester

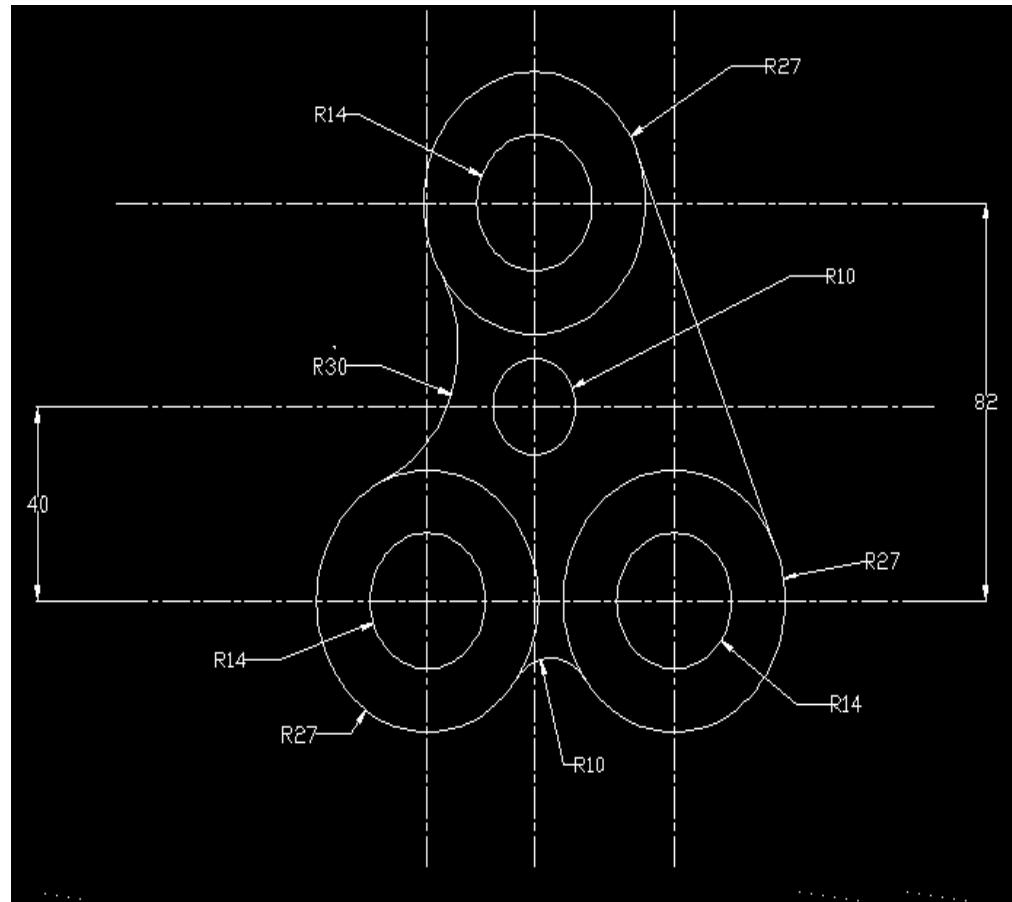
**Computer aided modeling and
manufacturing**

EXPERIMENT LIST

S. NO	NAME OF EXPERIMENT	PAGE NO
01	Drawing orthographic Figure using AutoCAD software	02-07
02	Practices Set of Orthographic Figure using AutoCAD software	07-15
03	Draw Isometric figure using AutoCAD software	16-17
04	Practices Set of Isometric Figure using AutoCAD software	18
05	To write the part program for component shown in Fig. 01 . Assuming the work piece is Aluminum and the speed is 1200 rpm, feed 20 mm/min and maximum depth of cut is 1 mm.	19-20
06	To write the part program for the component shown in Fig.2.. assuming work piece as AL the speed is 1200rpm, feed given is 20mm/min.	23-25
07	To write the part program for the component shown in Fig. 3 . Assuming work piece is Aluminum and the speed is 1200 rpm, feed given is 20 mm/min,using pattern repeated cycle.	26
08	To write the part programming for the component shown in Fig 4 . Assuming work piece as Aluminum and the turning speed is 1200 rpm and feed is 20 mm / min and the depth of cut is 1 mm. For thread cutting reduce the speed to half of the turning speed and pitch is 0.1mm.	27-29
09	To write the part programming for the figure shown in Fig.5 . speed is 1200 rpm,feed is 20 mm / min. Assuming work piece as Aluminium.	30-34

EXPERIMENT No-1

Aim: - Draw the plan and elevation of the given drawing using autocad-2016.

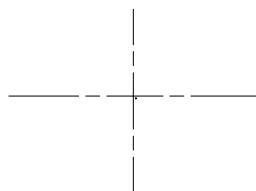

Hardware specification:-

Zenith premium PC with Intel Pentium 4 Processor 3.06GHZ, 533 MHZ FSB 1MB cache, Intel 615 chip set mother board, 8GB SATA hard disk.1GB DDR RAM. Maximum 3d/2d resolution of 2048×1536, 16 million colors (shared memory using dynamic video memory technology) On board 10/100 LAN chip. PS2, 107keys keyboard, Optical Mouse, 17" pure flat CRT monitor.

Commands used: - Construction line, circle, fillet, Tangent trim offset.

Procedure:-

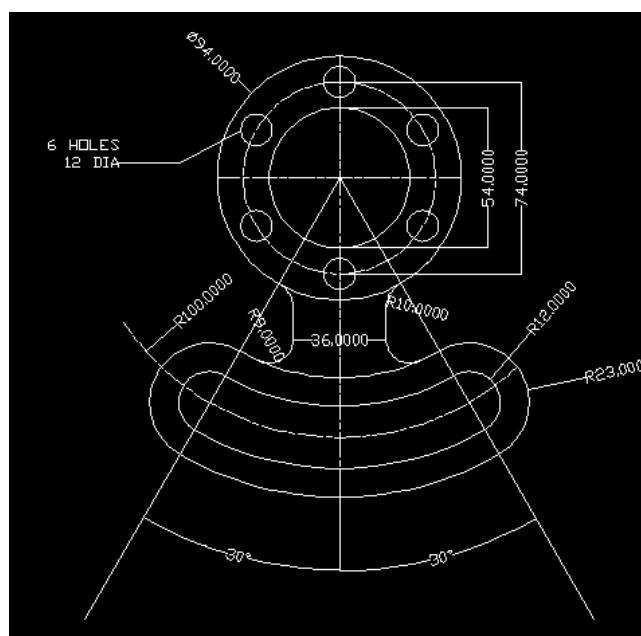
- 1) Invoke auto cad -2008 from the menu or from shortcut icon on the desktop.
- 2) Set limits for the working window
 - limits <enter> (0,0)<enter>(150, 150) <enter>
 - xl <enter> select horizontal line and again.
 - xl <enter> select vertical line. The origin is considered as O1.
- 3) Draw a circle of diameter 28 mm from the origin (O1)
- 4) Now take an offset command with a distance of 60mm and draw a vertical line on right side. The origin is considered as O2. From origin O2 draw a circle of diameter 28mm.
- 5) Draw the circle of radius 27mm from the origins O1 and O2.
- 6) With an offset command, draw a horizontal line with a distance of 40mm in the upward direction from the origins O1 and O2 lines. Draw a vertical line on the right side with an offset distance of 26mm from the origin O1 line. This gives us an origin O from the origin O3; draw a circle of dia 20mm.
- 7) With an offset command, draw a horizontal line with a distance of 82mm in the upward direction from the origin O1 and O2 line. We get origin O4 from origin O4 draw a circle of 28mm dia and 27mm radius
- 8) Use the fillet command to get an arc on the large circle of origin O1 and O4 with a 30mm radius and on the large circle of origin O1 and O2 with a radius 10mm.
- 10) Using OSNAP function, settings tangent draw a line on O4 and O2.

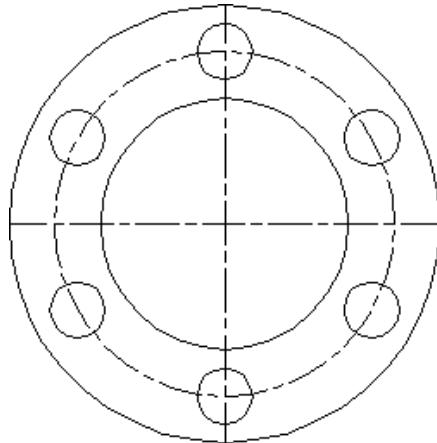
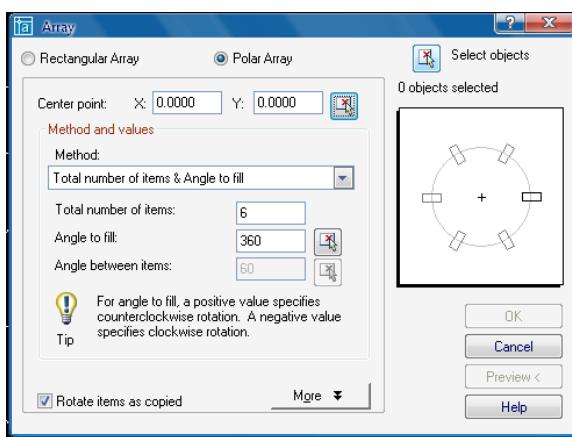


Aim: To draw the following orthographic figure using ACAD

PROCEDURE

STEP 1: Draw axis lines in the respective format with their intersection point at **(0,0)**


- Go to **PROPERTIES** tool bar
- Load line type as **ISO LONG DASH SHORT DASH** in the line type area.
- Select line type **ISO LONG DASH SHORT DASH** in the line type area.

STEP 2 a: Draw circles of given dimensions using circle command with their centre as the intersection of the axis lines.

- 3 circles of diameters 94, 74 and 54 are to be drawn
- The circle with 74 diameter is of **ISO LONG DASH SHORT DASH** format

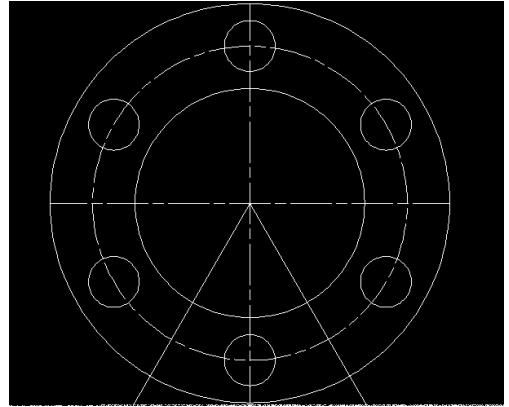
STEP 2 b: Using **POLAR ARRAY** draw the 6 holes on the circle of diameter 74 each of 12 dia as shown in the figure below

STEP 3: Draw two construction lines at an angle of 30° to the vertical axis line

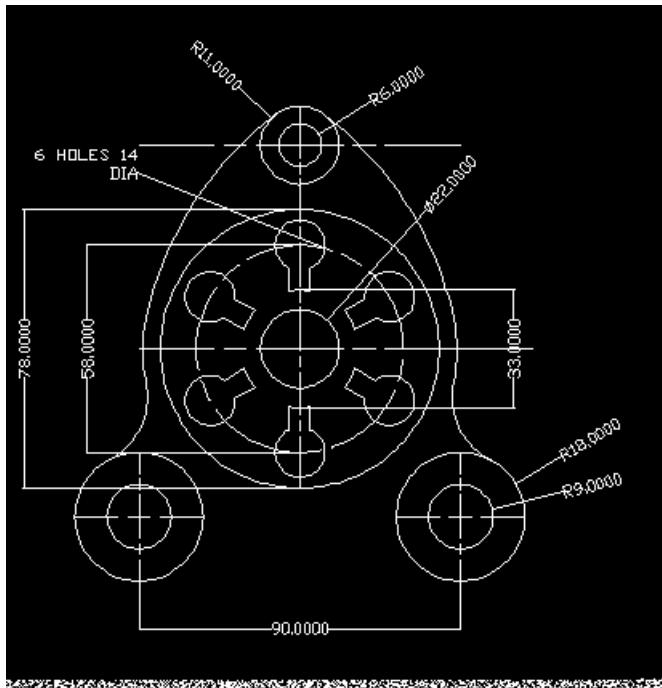
STEP 4: With A as center an radius 100 draw an arc between the above lines

STEP 5: Offset the arc on the either side by the distances as mentioned in the figure.

STEP 6: Complete the figure by using fillet command.


STEP 7: Give dimensions to the completed figure.

Command: `_qsave`


PRECAUTIONS:

Put **ORTHO ON** where ever necessary.

Use the required modify tool bar commands like **TRIM, ERASE, COPY, MIRROR ETC.,**

Aim: to draw the following figure using ACAD

PROCEDURE

Set the limits of the drawing screen

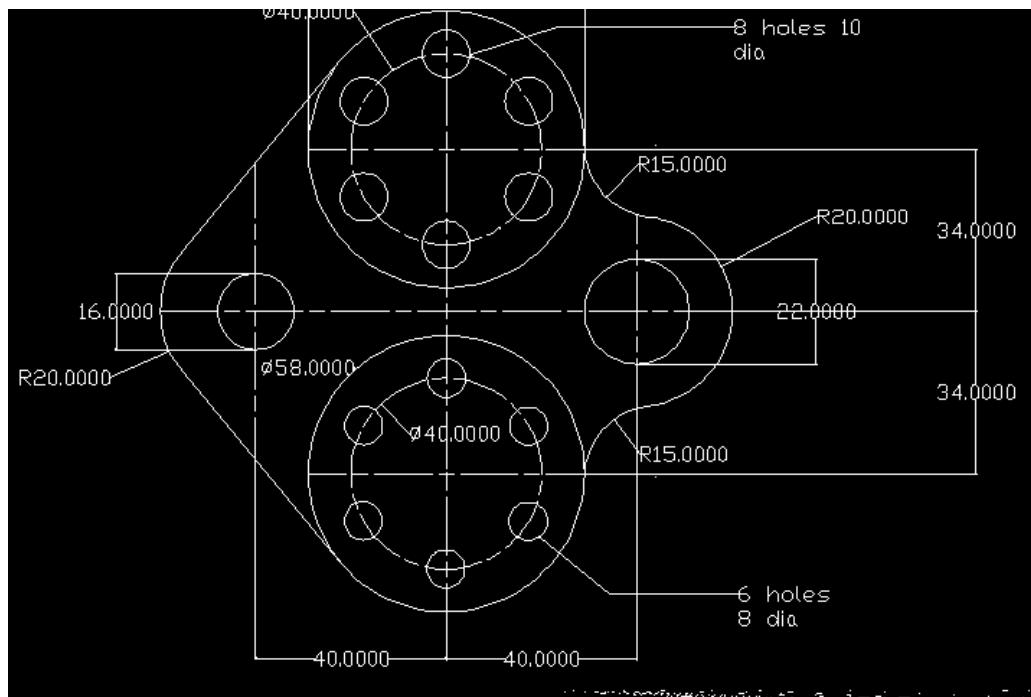
STEP 1: Draw axis lines in the respective format with their intersection point at **(0,0)**

STEP 2: Draw circles of given dimensions using circle command with their centre as the intersection of the axis lines.

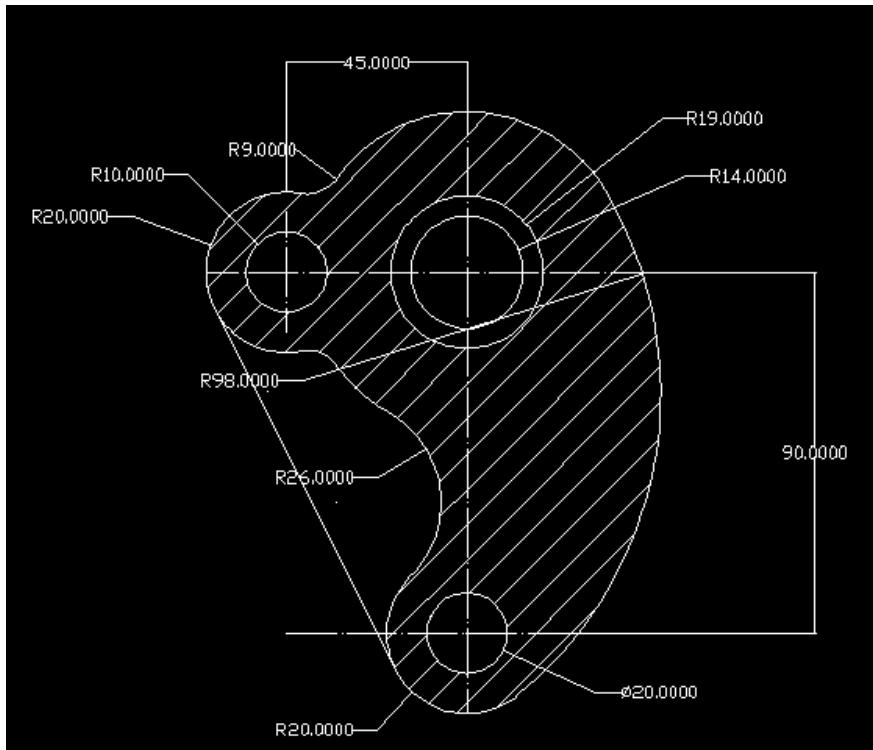
STEP 3: Using **POLAR ARRAY** draw the 6 key holes on the circle of diameter 58 of given dimensions

STEP 4: For the outer cover use **CIRCLE** command and the in command prompt area type **TAN TAN RADIUS**. This gives the idea of drawing the outer cover

STEP 7: Give dimensions to the completed figure.

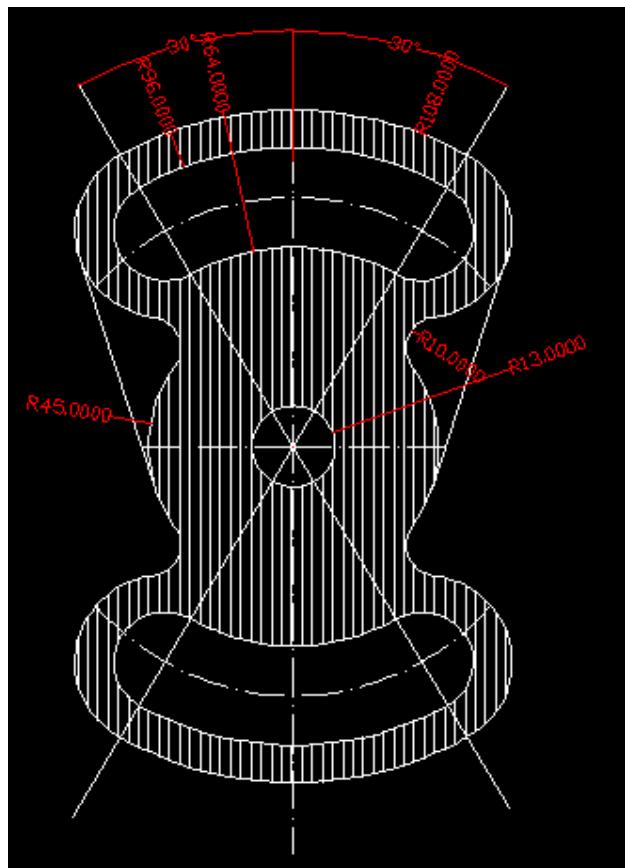

Command: `_qsave`

PRECAUTIONS:

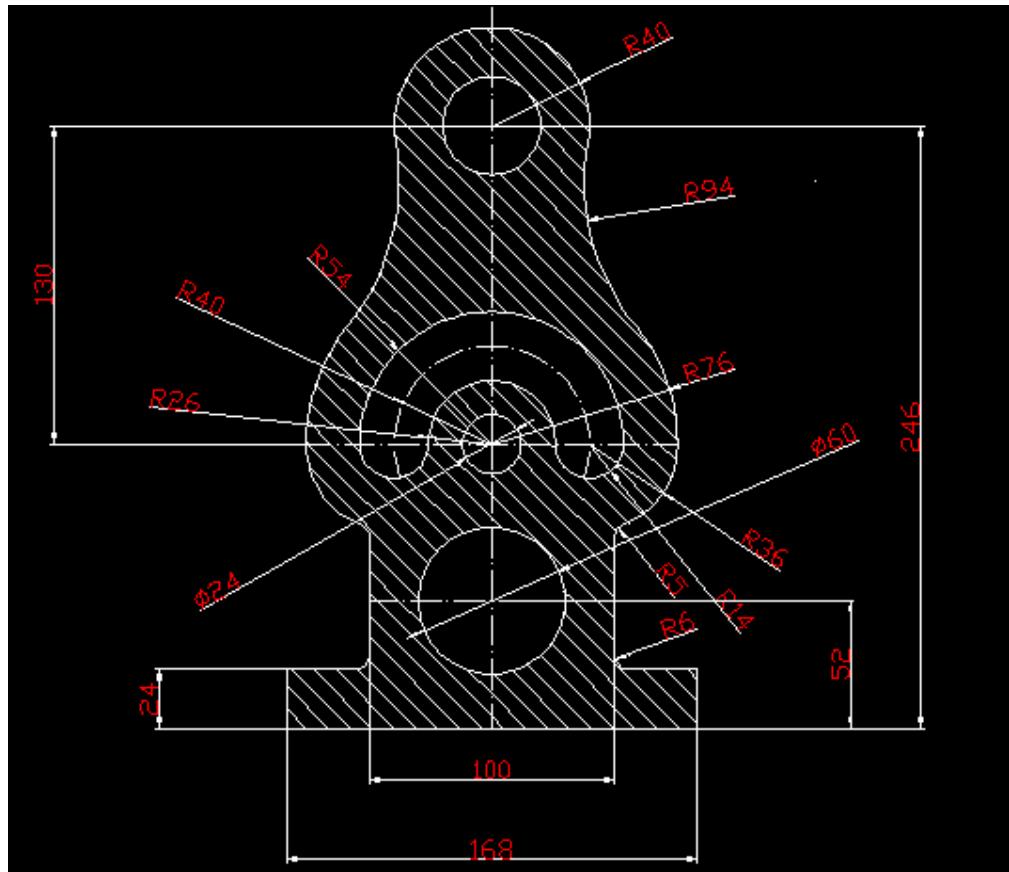

Put **ORTHO ON** where ever necessary.

Use the required modify tool bar commands like **TRIM, ERASE, COPY, MIRROR ETC.,**

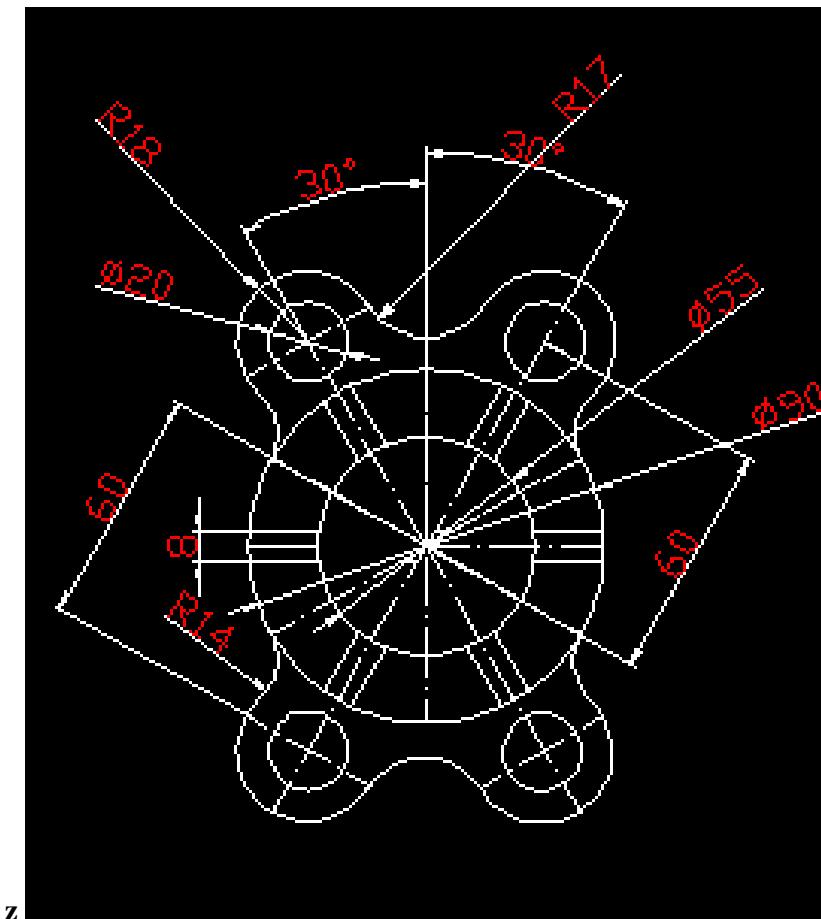
PRACTICE FIGURE 1

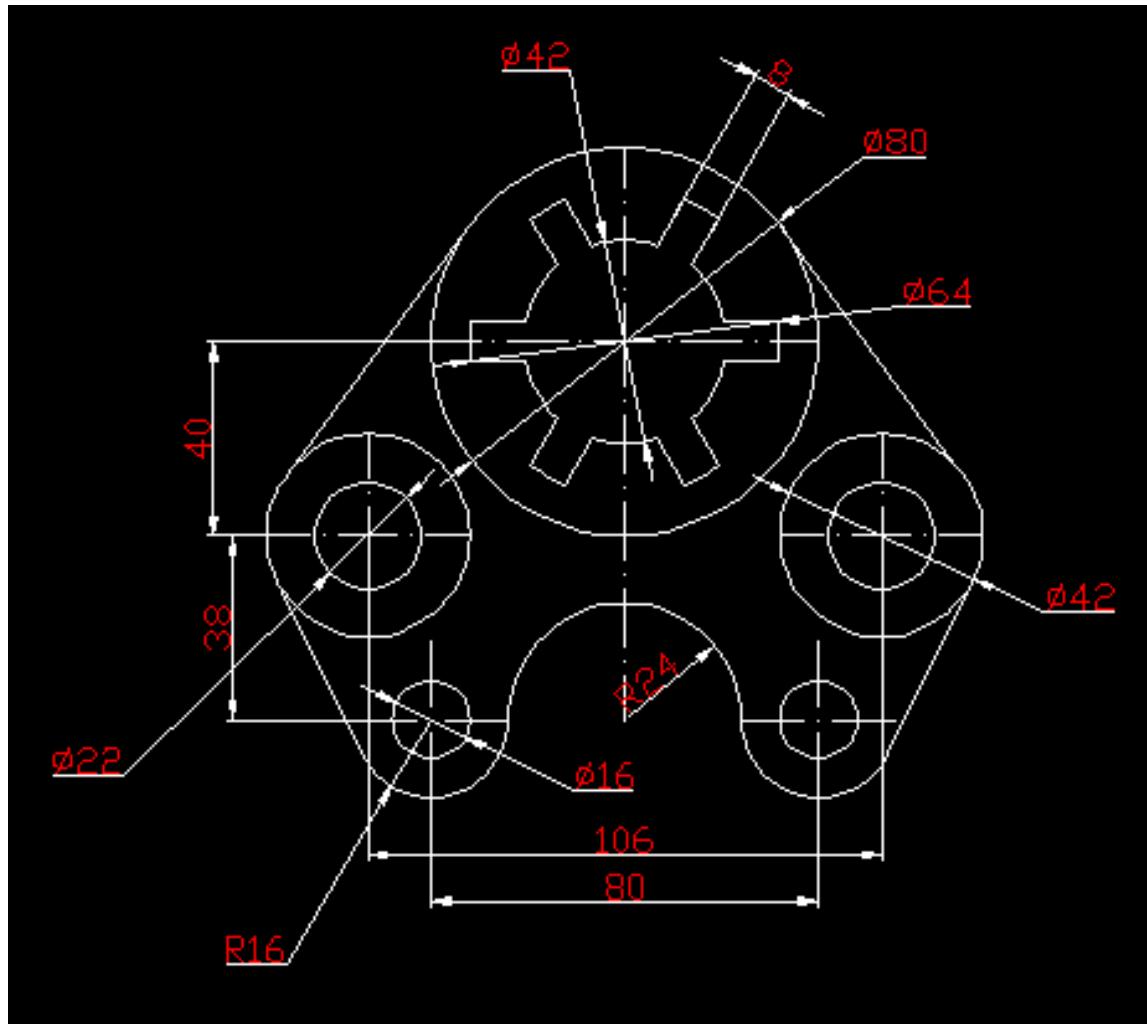


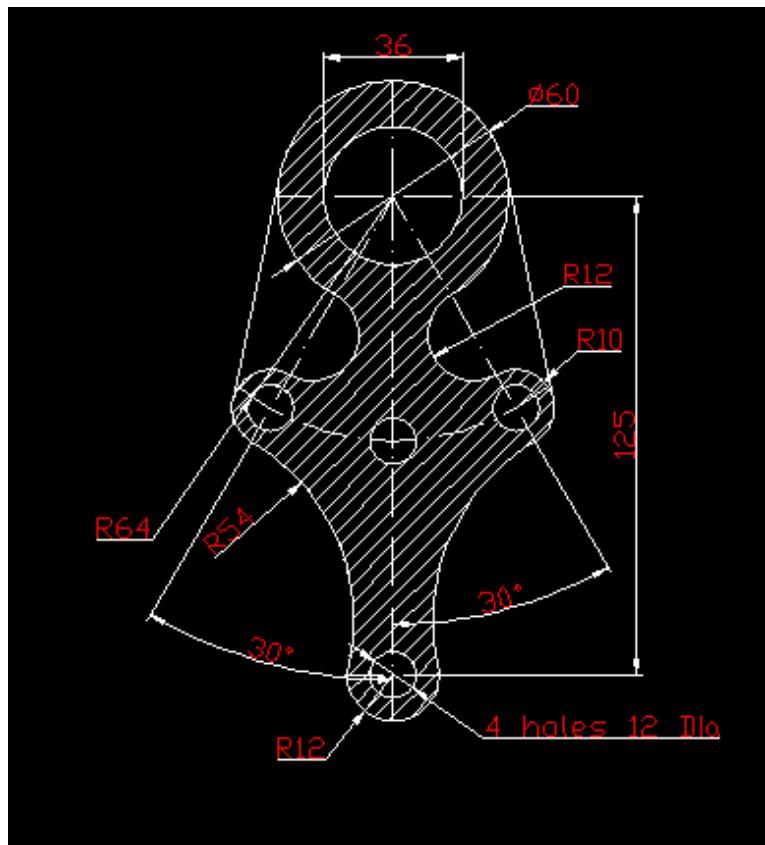
PRACTICE FIGURE 2



DO THE HATCHING USINH HATCH COMMAND IN THE DRAW TOOL BAR.


PRACTICE FIGURE 3


PRACTICE FIGURE 4


PRACTICE FIGURE 5

PRACTICE FIGURE 6

PRACTICE FIGURE 7

Experiment :-2

ISOMETRIC DRAWINGS

For all isometric figures right click **GRID** in drafting tool bar <setting> change grid snap to **ISOMETRIC SNAP**. And check **ORTHO ON**

F5 – TOGGLE KEY BETWEEN ISOPLANE TOP, ISOPLANE LEFT AND ISOPLANE RIGHT

FIGURE 1

Aim: to draw the following figure using ACAD

COMMANDS USED

Line, Dimensions, Drafting commands

PROCEDURE

<Ortho on> <Isoplane Top> <Osnap on>

Command: _line Specify first point:

Specify next point or [Undo]: **104**

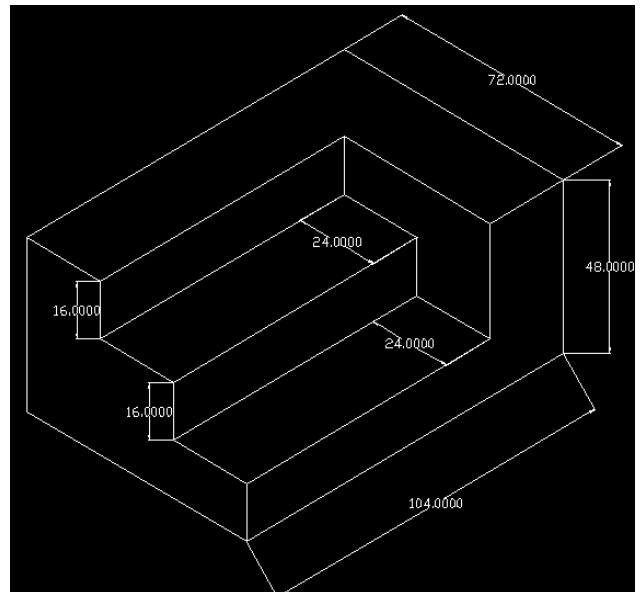
Specify next point or [Undo]:

Command: _qsave

Command: _dimaligned

Specify first extension line origin or <select object>:

Specify second extension line origin:


Command: _dimlinear

Specify first extension line origin or <select object>:

Specify second extension line origin:

Specify dimension line location or [Mtext/Text/Angle/Horizontal/Vertical/Rotated]:

Dimension text = 48.0000

Command: _dimedit

Enter type of dimension editing [Home/New/Rotate/Oblique] <Home>: **_o**

Select objects: 1 found

Enter obliquing angle (press ENTER for none): **30** **Command: _qsave**

FIGURE 2

Aim: to draw the following figure using ACAD

COMMANDS USED

Line, Drafting commands, Dimension aligned, Dimension linear, Dimension oblique, Layers

Command: line

Specify first point: <Isoplane Left>

Specify next point or [Undo]: 12

Specify next point or [Undo]:
<Isoplane Top> 25

Command: qsave

Command: dimlinear

Specify first extension line origin or <select object>:

Specify second extension line origin:

Specify dimension line location
or [Mtext/Text/Angle/Horizontal/Vertical/Rotated]:

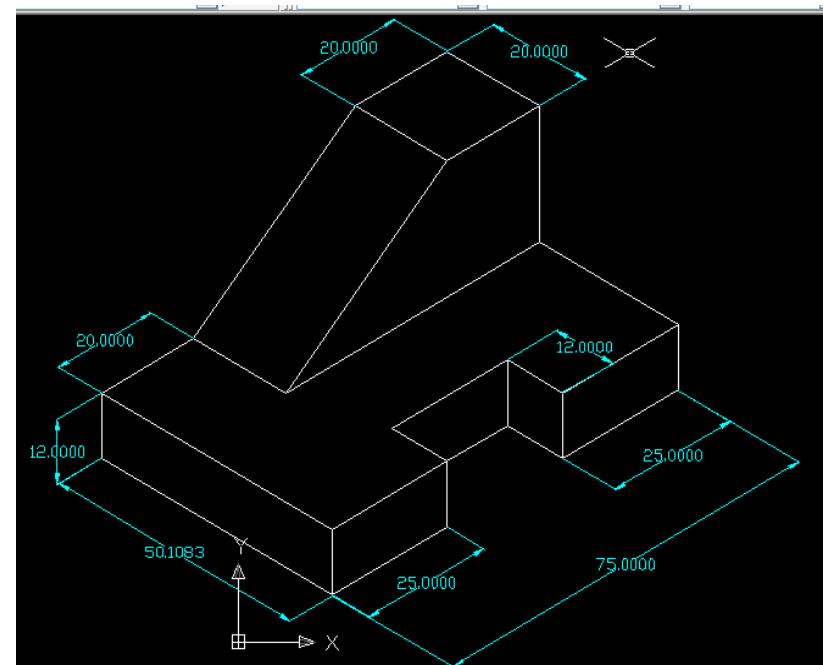
Dimension text = 12.0000

Command: dimaligned

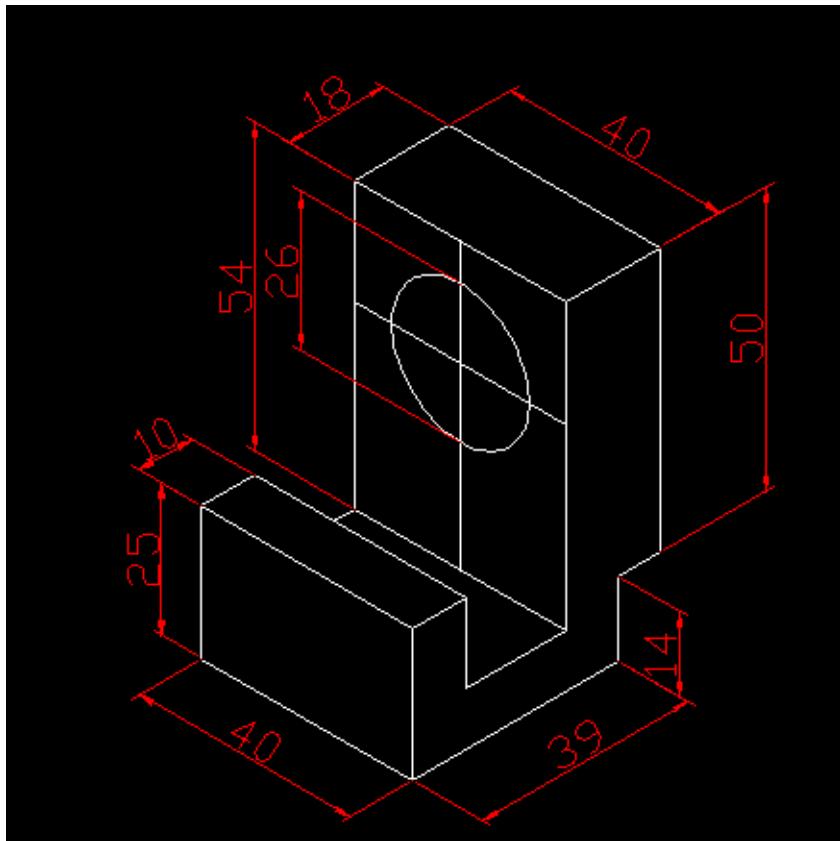
Specify first extension line origin or <select object>:

Specify second extension line origin:

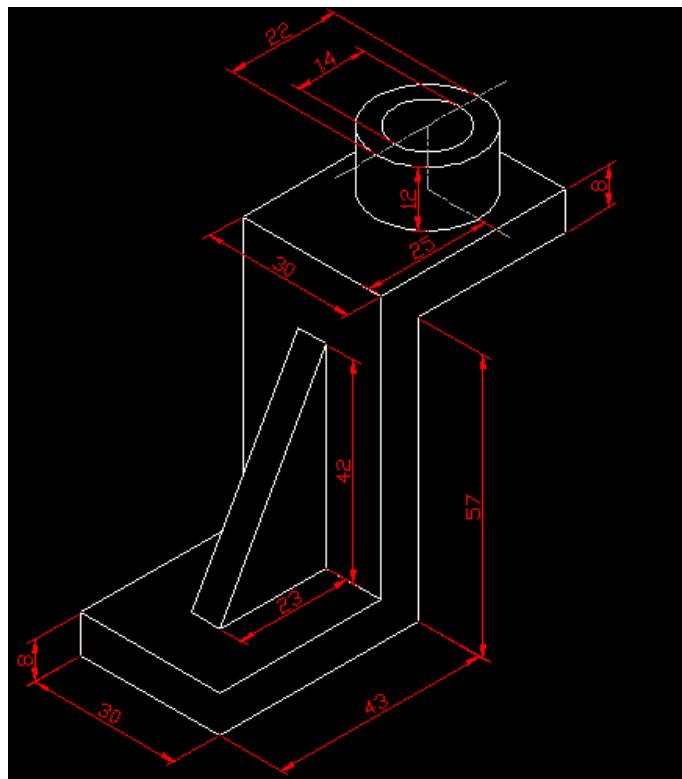
Specify dimension line location or [Mtext/Text/Angle]:


Dimension text = 25.0000

Command: dimedit

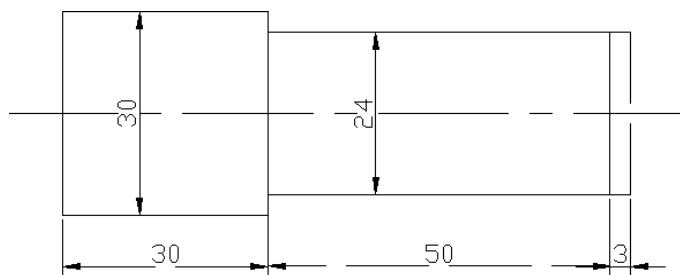

Enter type of dimension editing [Home/New/Rotate/Oblique] <Home>: **_o**

Select objects: 1 found


Enter obliquing angle (press ENTER for none): **30 or -30** **Command: _qsave**

PRACTICE FIGURE 1

PRACTICE FIGURE 2



AIM:

To write the part program for component shown in **Fig. 01**. Assuming the work piece is Aluminum and the speed is 1200 rpm, feed 20 mm/min and maximum depth of cut is 1 mm.

- a. With Canned cycle
- b. Without Canned cycle.

MATERIAL REQUIRED: Aluminum Rod of 30 mm diameter and 80 mm length.

PART DRAWING:**FIGURE: 01****PART PROGRAM:****(A) WITH CANNED CYCLE**

N 00	G 21	G 90	<EOB>			
N 01	M 03	S 1200	< EOB>			
N 02	G 00	X 30	Z 0	<EOB>		
N 03	G 71	Z -3	X 0	I 1	F 20	<EOB>
N 04	G 00	X 30	Z 0	<EOB>		
N 05	G 72	X 24	Z -50	I 1	F 20	<EOB>
N 06	G 00	X 50	Z 10	<EOB>		
N 07	M 30		<EOB>			

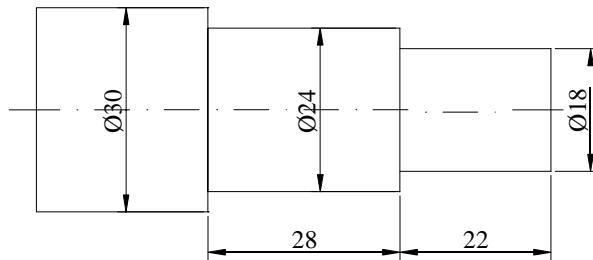
(B) WITHOUT CANNED CYCLE

N 00	G 21	G 90		<EOB>
N 01	M 03	S 1200		<EOB>
N 02	G 00	X 30	Z 1	<EOB>
N 03	G 01	Z -1	F 20	<EOB>
N 04	G 01	X 00	F 20	<EOB>
N 05	G 00	X 30	Z 00	<EOB>
N 06	G 01	Z -2	F 20	<EOB>
N 07	G 01	X 00	F 20	<EOB>
N 08	G 00	X 30	Z 00	<EOB>
N 09	G 01	Z -3	F 20	<EOB>
N 10	G 01	X 00	F 20	<EOB>
N 11	G 00	X 30	Z 00	<EOB>
N 12	G 01	Z -50	F 20	<EOB>
N 13	G 01	X 28	F 20	<EOB>
N 14	G 00	X 30	Z 00	<EOB>
N 15	G 01	Z -50	F 20	<EOB>
N 16	G 01	X 26	F 20	<EOB>
N 17	G 00	X 30	Z 00	<EOB>
N 18	G 01	Z -50	F 20	<EOB>
N 19	G 01	X 24	F 20	<EOB>
N 20	G 00	X 50	Z 10	<EOB>
N 21	M 30			<EOB>

RESULT:

The program is written and simulated and stored in System No...and file name as...

STEP TURNING OPERATION


AIM:

To write the part program for the component shown in fig 2. assuming work piece as AL the speed is 1200rpm, feed given is 20mm/min.

- (a) Without canned cycle
- (b) With canned cycle.

MATERIAL REQUIRED: Aluminum Rod of 30 mm diameter and 80 mm length.

PART DRAWING:

PART PROGRAM: (A) WITHOUT CANNED CYCLE

```
N 00      G 21    G 90          <EOB>
N 01      M 03    S 1200        <EOB>
N 02      G 04    X 02          <EOB>
N 03      G 00    X 30    Z 00  <EOB>
N 04      G 01    Z -50   F 20  <EOB>
N 05      G 00    X 30    Z 00  <EOB>
N 06      G 01    X 26    F 20  <EOB>
N 07      G 01    Z -50   F 20  <EOB>
N 08      G 00    X 30    Z 00  <EOB>
N 09      G 01    X 24    F 20  <EOB>
N 10      G 01    Z -50   F 20  <EOB>
N 11      G 00    X 30    Z 00  <EOB>
```

N 12 G 01 X 22 F 20 <EOB>

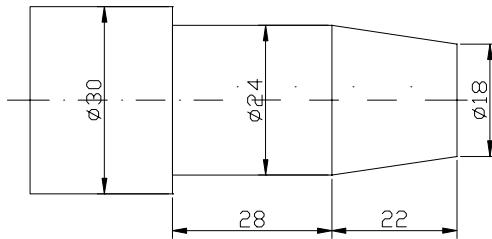
N 13	G 01	Z -22	F 20	<EOB>
N 14	G 00	X 30	Z 00	<EOB>
N 15	G 01	X 20	F 20	<EOB>
N 16	G 01	Z -22	F 20	<EOB>
N 17	G 00	X 30	Z 00	<EOB>
N 19	G 00	X 50	Z 10	<EOB>
N 20	M 30			<EOB>

(B) WITH CANNED CYCLE:

N 00	G 21	G 90				<EOB>
N 01	M 03	S 1200				<EOB>
N 02	G 04	X 03				<EOB>
N 03	G 00	X 30	Z 00			<EOB>
N 04	G 72	X 24	Z -50	I 01	F 20	<EOB>
N 05	G 72	X 20	Z -22	I 01	F20	<EOB>
N 06	G 00	X 30	Z 00			<EOB>
N 08	X 50	Z 10				<EOB>
N 09	M 30					<EOB>

RESULT:

The program is written and simulated and stored in System No...and file name as...


PATTERN REPEATED CYCLE

AIM:

To write the part program for the component shown in **Fig. 3**. Assuming work piece is Aluminum and the speed is 1200 rpm, feed given is 20 mm/min, using pattern repeated cycle.

MATERIAL REQUIRED: Aluminum Rod of 30 mm diameter and 80 mm length.

PART DRAWING:

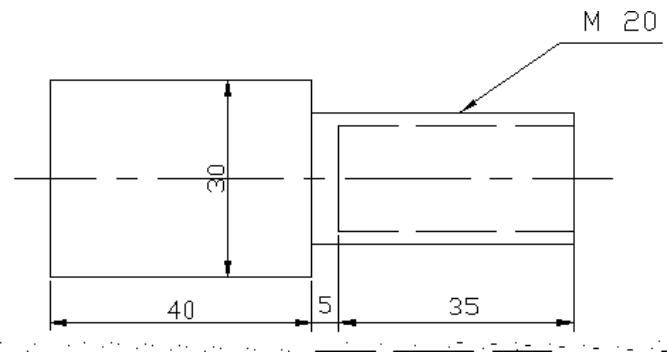
FIGURE 3.

PART PROGRAM:

N 00	G 21	G 90	<EOB>
N 01	M 03	S 1200	<EOB>
N 02	G 04	X 04	<EOB>
N 03	G 00	X 30 Z 00	<EOB>
N 04	G 73	P 05 Q 09 I 01	<EOB>
N 05	G 01	X 18 F 20	<EOB>
N 06	G 01	X 24 Z -22 F 20	<EOB>
N 07	G 01	Z -50 F 20	<EOB>
N 08	G 00	X 30	<EOB>
N 09	G 00	Z 00	<EOB>
N 10	G 00	X 50 Z 05	<EOB>
N 11	M 30		<EOB>

RESULT: The program is written and simulated and stored in System No...and file

name as...


THREAD CUTTING

AIM:

To write the part programming for the component shown in **Fig 4**. Assuming work piece as Aluminum and the turning speed is 1200 rpm and feed is 20 mm / min and the depth of cut is 1 mm. For thread cutting reduce the speed to half of the turning speed and pitch is 0.1mm.

MATERIAL REQUIRED: Aluminum Rod of 30 mm diameter and 80 mm length.

PART DRAWING:

FIGURE.4.

PART PROGRAM:

N 00	G 21 G 90	<EOB>
N 01	M 03 S 1200	<EOB>
N 02	G 00 X 30 Z 00	<EOB>
N 03	G 01 Z -01 F 20	<EOB>
N 04	G 01 X 00 F 20	<EOB>
N 05	G 00 X 30 Z 00	<EOB>
N 06	G 72 X 20 Z -40 I 01 F 20	<EOB>
N 07	G 00 X 30 Z 05	<EOB>
N 08	M 05	<EOB>
N 09	T 0202	<EOB>
N 09	M 03 S 600	<EOB>

N 10	G 04	X 02	<EOB>			
N 11	G 01	X 20	Z 00	F 20	<EOB>	
N 12	G 93 (or) 92	X 20	Z -35	I 0.1	F 01	<EOB>
N 13	G 00	X 30	Z 01	<EOB>		
N 14	M 30	<EOB>				

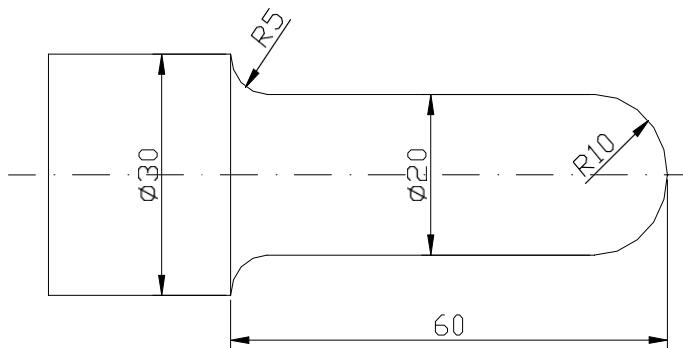
RESULT:

The program is written and simulated and stored in System No...and file name as...

CIRCULAR INTERPOLATION

AIM:

To write the part programming for the figure shown in **Fig.5.** speed is 1200 rpm, feed is 20 mm / min. Assuming work piece as Aluminium.


MATERIAL REQUIRED: Aluminum Rod of 30 mm diameter and 80 mm length.

THEORY:

Circular interpolation is used to simplify the programming of arcs and circles. It required of four bits of information those are.

- The direction of cutter travel (G0Z for cw and G03 is for CCW)
- Start point for arc (x_s, z_s) for lathe and (x_s, y_s) for milling
- Center of arc (x_l, z_l) for lathe and (x_l, y_l) for milling machine
- The final point of the arc except for (x_f, z_f) for lathe and (x_f, y_f) for milling.

PART DRAWING:

FIGURE.5.

PART PROGRAM:

N 00	G 21	G 90	<EOB>			
N 01	M 03	S 1200	<EOB>			
N 02	G 04	X 04	<EOB>			
N 03	G 00	X 30	Z 00	<EOB>		
N 04	G 72	X 20	Z -55	I 01	F 20	<EOB>
N 05	G 00	X 30	Z 00	<EOB>		
N 06	G 00	X 20	Z 00	<EOB>		

N 07 G 01 X 18 F 20

<EOB>

N 08	G 02	X 20	Z -01	K -1	I 0	F 20	<EOB>
N 09	G 00	Z 00					<EOB>
N 10	G 01	X 16	F 20				<EOB>
N 11	G 02	X 20	Z -02	K -2	I 0	F 20	<EOB>
N 12	G 00	Z 00					<EOB>
N 13	G 01	X 14	F 20				<EOB>
N 14	G 02	X 20	Z -03	K -3	I 0	F 20	<EOB>
N 15	G 00	Z 00					<EOB>
N 16	G 01	X 12	F 20				<EOB>
N 17	G 02	X 20	Z -04	K -4	I 0	F 20	<EOB>
N 18	G 00	Z 00					<EOB>
N 19	G 01	X 10	F 20				<EOB>
N 20	G 02	X 20	Z -5	K -5	I 0	F 20	<EOB>
N 21	G 00	Z 00					<EOB>
N 22	G 01	X 8	F 20				<EOB>
N 23	G 02	X 20	Z -6	K -6	I 0	F 20	<EOB>
N 24	G 00	Z 00					<EOB>
N 25	G 01	X 6	F 20				<EOB>
N 26	G 02	X 20	Z -7	K -7	I 0	F 20	<EOB>
N 27	G 00	Z 00					<EOB>
N 28	G 01	X 4	F 20				<EOB>
N 29	G 02	X 30	Z -8	K -8	I 0	F 20	<EOB>
N 30	G 00	Z 00					<EOB>
N 31	G 01	X 2	F 20				<EOB>
N 32	G 02	X 20	Z -9	K -9	I 0	F 20	<EOB>
N 33	G 00	Z 00					<EOB>
N 34	G 01	X 0	F 20				<EOB>
N 35	G 02	X 20	Z -10	K -10	I 0	F 20	<EOB>
N 36	G 01	Z -31	F 20				<EOB>

N 37 G 01 X 28 F 20

<EOB>

N 38	G 03	X 30	Z -32	K 0	I 2	F 20	<EOB>
N 39	G 00	Z -31					<EOB>
N 40	G 01	X 26	F 20				<EOB>
N 41	G 03	X 30	Z-33	K 0	I 4	F 20	>EOB>
N 42	G 00	Z -31					<EOB>
N 43	G 01	X 24	F 20				<EOB>
N 44	G 03	X 30	Z -34	K 0	I 6	F 20	<EOB>
N 45	G 00	Z -31					<EOB>
N 46	G 01	X 22	F 20				<EOB>
N 47	G 03	X 30	Z -35	K 0	I 8	F 20	<EOB>
N 48	G 00	Z -31					<EOB>
N 49	G 01	X 20	F 20				<EOB>
N 50	G 03	X 30	Z -36	K 0	I 10	F 20	<EOB>
N 51	G 00	X 35	Z 10				<EOB>
N 52	M 30						<EOB>

RESULT:

The program is written and simulated and stored in System No...and file name